![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stval2 | GIF version |
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
Ref | Expression |
---|---|
1stval2 | ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4690 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2742 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op1st 6150 | . . . . 5 ⊢ (1st ‘⟨𝑥, 𝑦⟩) = 𝑥 |
5 | 2, 3 | op1stb 4480 | . . . . 5 ⊢ ∩ ∩ ⟨𝑥, 𝑦⟩ = 𝑥 |
6 | 4, 5 | eqtr4i 2201 | . . . 4 ⊢ (1st ‘⟨𝑥, 𝑦⟩) = ∩ ∩ ⟨𝑥, 𝑦⟩ |
7 | fveq2 5517 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = (1st ‘⟨𝑥, 𝑦⟩)) | |
8 | inteq 3849 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∩ 𝐴 = ∩ ⟨𝑥, 𝑦⟩) | |
9 | 8 | inteqd 3851 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∩ ∩ 𝐴 = ∩ ∩ ⟨𝑥, 𝑦⟩) |
10 | 6, 7, 9 | 3eqtr4a 2236 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = ∩ ∩ 𝐴) |
11 | 10 | exlimivv 1896 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = ∩ ∩ 𝐴) |
12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 ∩ cint 3846 × cxp 4626 ‘cfv 5218 1st c1st 6142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fv 5226 df-1st 6144 |
This theorem is referenced by: 1stdm 6186 |
Copyright terms: Public domain | W3C validator |