![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stval2 | GIF version |
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
Ref | Expression |
---|---|
1stval2 | ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4721 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op1st 6199 | . . . . 5 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
5 | 2, 3 | op1stb 4509 | . . . . 5 ⊢ ∩ ∩ 〈𝑥, 𝑦〉 = 𝑥 |
6 | 4, 5 | eqtr4i 2217 | . . . 4 ⊢ (1st ‘〈𝑥, 𝑦〉) = ∩ ∩ 〈𝑥, 𝑦〉 |
7 | fveq2 5554 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = (1st ‘〈𝑥, 𝑦〉)) | |
8 | inteq 3873 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ 𝐴 = ∩ 〈𝑥, 𝑦〉) | |
9 | 8 | inteqd 3875 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐴 = ∩ ∩ 〈𝑥, 𝑦〉) |
10 | 6, 7, 9 | 3eqtr4a 2252 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = ∩ ∩ 𝐴) |
11 | 10 | exlimivv 1908 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = ∩ ∩ 𝐴) |
12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ∩ cint 3870 × cxp 4657 ‘cfv 5254 1st c1st 6191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fv 5262 df-1st 6193 |
This theorem is referenced by: 1stdm 6235 |
Copyright terms: Public domain | W3C validator |