| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stval2 | GIF version | ||
| Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| Ref | Expression |
|---|---|
| 1stval2 | ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 4780 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 2802 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op1st 6290 | . . . . 5 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 5 | 2, 3 | op1stb 4568 | . . . . 5 ⊢ ∩ ∩ 〈𝑥, 𝑦〉 = 𝑥 |
| 6 | 4, 5 | eqtr4i 2253 | . . . 4 ⊢ (1st ‘〈𝑥, 𝑦〉) = ∩ ∩ 〈𝑥, 𝑦〉 |
| 7 | fveq2 5626 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = (1st ‘〈𝑥, 𝑦〉)) | |
| 8 | inteq 3925 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ 𝐴 = ∩ 〈𝑥, 𝑦〉) | |
| 9 | 8 | inteqd 3927 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐴 = ∩ ∩ 〈𝑥, 𝑦〉) |
| 10 | 6, 7, 9 | 3eqtr4a 2288 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = ∩ ∩ 𝐴) |
| 11 | 10 | exlimivv 1943 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = ∩ ∩ 𝐴) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ∩ cint 3922 × cxp 4716 ‘cfv 5317 1st c1st 6282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fv 5325 df-1st 6284 |
| This theorem is referenced by: 1stdm 6326 |
| Copyright terms: Public domain | W3C validator |