Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgival | GIF version |
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.) |
Ref | Expression |
---|---|
rdgival | ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgivallem 6322 | . 2 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))) | |
2 | fvres 5489 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) = (rec(𝐹, 𝐴)‘𝑥)) | |
3 | 2 | fveq2d 5469 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
4 | 3 | iuneq2i 3867 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) |
5 | 4 | uneq2i 3258 | . 2 ⊢ (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
6 | 1, 5 | eqtrdi 2206 | 1 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ∪ cun 3100 ∪ ciun 3849 Oncon0 4322 ↾ cres 4585 Fn wfn 5162 ‘cfv 5167 reccrdg 6310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-recs 6246 df-irdg 6311 |
This theorem is referenced by: rdgss 6324 rdgisuc1 6325 rdgisucinc 6326 oav2 6403 omv2 6405 |
Copyright terms: Public domain | W3C validator |