![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgival | GIF version |
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.) |
Ref | Expression |
---|---|
rdgival | ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgivallem 6208 | . 2 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))) | |
2 | fvres 5377 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) = (rec(𝐹, 𝐴)‘𝑥)) | |
3 | 2 | fveq2d 5357 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
4 | 3 | iuneq2i 3778 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) |
5 | 4 | uneq2i 3174 | . 2 ⊢ (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
6 | 1, 5 | syl6eq 2148 | 1 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 Vcvv 2641 ∪ cun 3019 ∪ ciun 3760 Oncon0 4223 ↾ cres 4479 Fn wfn 5054 ‘cfv 5059 reccrdg 6196 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-iord 4226 df-on 4228 df-suc 4231 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-recs 6132 df-irdg 6197 |
This theorem is referenced by: rdgss 6210 rdgisuc1 6211 rdgisucinc 6212 oav2 6289 omv2 6291 |
Copyright terms: Public domain | W3C validator |