ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgival GIF version

Theorem rdgival 6272
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
rdgival ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑉

Proof of Theorem rdgival
StepHypRef Expression
1 rdgivallem 6271 . 2 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
2 fvres 5438 . . . . 5 (𝑥𝐵 → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) = (rec(𝐹, 𝐴)‘𝑥))
32fveq2d 5418 . . . 4 (𝑥𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
43iuneq2i 3826 . . 3 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))
54uneq2i 3222 . 2 (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
61, 5syl6eq 2186 1 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 962   = wceq 1331  wcel 1480  Vcvv 2681  cun 3064   ciun 3808  Oncon0 4280  cres 4536   Fn wfn 5113  cfv 5118  reccrdg 6259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-recs 6195  df-irdg 6260
This theorem is referenced by:  rdgss  6273  rdgisuc1  6274  rdgisucinc  6275  oav2  6352  omv2  6354
  Copyright terms: Public domain W3C validator