Proof of Theorem txswaphmeo
Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | simpr 109 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ (TopOn‘𝑌)) |
3 | 1, 2 | cnmpt2nd 12929 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
4 | 1, 2 | cnmpt1st 12928 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
5 | 1, 2, 3, 4 | cnmpt2t 12933 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽))) |
6 | | opelxpi 4636 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
7 | 6 | ancoms 266 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
8 | 7 | adantl 275 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
9 | 8 | ralrimivva 2548 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
10 | | eqid 2165 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) |
11 | 10 | fmpo 6169 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋)) |
12 | 9, 11 | sylib 121 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋)) |
13 | | opelxpi 4636 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) |
14 | 13 | ancoms 266 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) |
15 | 14 | adantl 275 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) |
16 | 15 | ralrimivva 2548 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) |
17 | | eqid 2165 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) |
18 | 17 | fmpo 6169 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑌 ∀𝑥 ∈ 𝑋 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌) ↔ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) |
19 | 16, 18 | sylib 121 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) |
20 | | txswaphmeolem 12960 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∘ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉)) = ( I ↾ (𝑌 × 𝑋)) |
21 | | txswaphmeolem 12960 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
22 | | fcof1o 5757 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) ∧ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∘ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉)) = ( I ↾ (𝑌 × 𝑋)) ∧ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)))) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉))) |
23 | 20, 21, 22 | mpanr12 436 |
. . . . 5
⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉))) |
24 | 12, 19, 23 | syl2anc 409 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉))) |
25 | 24 | simprd 113 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉)) |
26 | 2, 1 | cnmpt2nd 12929 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝑥) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
27 | 2, 1 | cnmpt1st 12928 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝑦) ∈ ((𝐾 ×t 𝐽) Cn 𝐾)) |
28 | 2, 1, 26, 27 | cnmpt2t 12933 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))) |
29 | 25, 28 | eqeltrd 2243 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))) |
30 | | ishmeo 12944 |
. 2
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)) ↔ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))) |
31 | 5, 29, 30 | sylanbrc 414 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽))) |