ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeo GIF version

Theorem txswaphmeo 13074
Description: There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 108 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
2 simpr 109 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ (TopOn‘𝑌))
31, 2cnmpt2nd 13042 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
41, 2cnmpt1st 13041 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
51, 2, 3, 4cnmpt2t 13046 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)))
6 opelxpi 4641 . . . . . . . . 9 ((𝑦𝑌𝑥𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
76ancoms 266 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
87adantl 275 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑥𝑋𝑦𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
98ralrimivva 2552 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
10 eqid 2170 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)
1110fmpo 6177 . . . . . 6 (∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
129, 11sylib 121 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
13 opelxpi 4641 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1413ancoms 266 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1514adantl 275 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑦𝑌𝑥𝑋)) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1615ralrimivva 2552 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
17 eqid 2170 . . . . . . 7 (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)
1817fmpo 6177 . . . . . 6 (∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌) ↔ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
1916, 18sylib 121 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
20 txswaphmeolem 13073 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋))
21 txswaphmeolem 13073 . . . . . 6 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
22 fcof1o 5765 . . . . . 6 ((((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) ∧ (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋)) ∧ ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)))) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2320, 21, 22mpanr12 437 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2412, 19, 23syl2anc 409 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2524simprd 113 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩))
262, 1cnmpt2nd 13042 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑥) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
272, 1cnmpt1st 13041 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑦) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
282, 1, 26, 27cnmpt2t 13046 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
2925, 28eqeltrd 2247 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
30 ishmeo 13057 . 2 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)) ↔ ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))))
315, 29, 30sylanbrc 415 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  cop 3584   I cid 4271   × cxp 4607  ccnv 4608  cres 4611  ccom 4613  wf 5192  1-1-ontowf1o 5195  cfv 5196  (class class class)co 5850  cmpo 5852  TopOnctopon 12761   Cn ccn 12938   ×t ctx 13005  Homeochmeo 13053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-map 6624  df-topgen 12587  df-top 12749  df-topon 12762  df-bases 12794  df-cn 12941  df-tx 13006  df-hmeo 13054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator