Proof of Theorem txswaphmeo
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl 109 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 2 |   | simpr 110 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 3 | 1, 2 | cnmpt2nd 14525 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | 
| 4 | 1, 2 | cnmpt1st 14524 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | 
| 5 | 1, 2, 3, 4 | cnmpt2t 14529 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽))) | 
| 6 |   | opelxpi 4695 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | 
| 7 | 6 | ancoms 268 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | 
| 8 | 7 | adantl 277 | 
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | 
| 9 | 8 | ralrimivva 2579 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | 
| 10 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) | 
| 11 | 10 | fmpo 6259 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋)) | 
| 12 | 9, 11 | sylib 122 | 
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋)) | 
| 13 |   | opelxpi 4695 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) | 
| 14 | 13 | ancoms 268 | 
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) | 
| 15 | 14 | adantl 277 | 
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) | 
| 16 | 15 | ralrimivva 2579 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) | 
| 17 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) | 
| 18 | 17 | fmpo 6259 | 
. . . . . 6
⊢
(∀𝑦 ∈
𝑌 ∀𝑥 ∈ 𝑋 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌) ↔ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) | 
| 19 | 16, 18 | sylib 122 | 
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) | 
| 20 |   | txswaphmeolem 14556 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∘ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉)) = ( I ↾ (𝑌 × 𝑋)) | 
| 21 |   | txswaphmeolem 14556 | 
. . . . . 6
⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) | 
| 22 |   | fcof1o 5836 | 
. . . . . 6
⊢ ((((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) ∧ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∘ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉)) = ( I ↾ (𝑌 × 𝑋)) ∧ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)))) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉))) | 
| 23 | 20, 21, 22 | mpanr12 439 | 
. . . . 5
⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉))) | 
| 24 | 12, 19, 23 | syl2anc 411 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉))) | 
| 25 | 24 | simprd 114 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉)) | 
| 26 | 2, 1 | cnmpt2nd 14525 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝑥) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | 
| 27 | 2, 1 | cnmpt1st 14524 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝑦) ∈ ((𝐾 ×t 𝐽) Cn 𝐾)) | 
| 28 | 2, 1, 26, 27 | cnmpt2t 14529 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))) | 
| 29 | 25, 28 | eqeltrd 2273 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))) | 
| 30 |   | ishmeo 14540 | 
. 2
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)) ↔ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))) | 
| 31 | 5, 29, 30 | sylanbrc 417 | 
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽))) |