| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addpinq1 | GIF version | ||
| Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| addpinq1 | ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1nqqs 7546 | . . . . 5 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 2 | 1 | oveq2i 6018 | . . . 4 ⊢ ([〈𝐴, 1o〉] ~Q +Q 1Q) = ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
| 3 | 1pi 7510 | . . . . 5 ⊢ 1o ∈ N | |
| 4 | addpipqqs 7565 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
| 5 | 3, 3, 4 | mpanr12 439 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
| 6 | 3, 5 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
| 7 | 2, 6 | eqtrid 2274 | . . 3 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
| 8 | mulidpi 7513 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
| 10 | 9 | oveq2i 6018 | . . . . 5 ⊢ ((𝐴 ·N 1o) +N (1o ·N 1o)) = ((𝐴 ·N 1o) +N 1o) |
| 11 | 10, 9 | opeq12i 3862 | . . . 4 ⊢ 〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 |
| 12 | eceq1 6723 | . . . 4 ⊢ (〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 → [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q |
| 14 | 7, 13 | eqtrdi 2278 | . 2 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) |
| 15 | mulidpi 7513 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
| 16 | 15 | oveq1d 6022 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1o) +N 1o) = (𝐴 +N 1o)) |
| 17 | 16 | opeq1d 3863 | . . 3 ⊢ (𝐴 ∈ N → 〈((𝐴 ·N 1o) +N 1o), 1o〉 = 〈(𝐴 +N 1o), 1o〉) |
| 18 | 17 | eceq1d 6724 | . 2 ⊢ (𝐴 ∈ N → [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q = [〈(𝐴 +N 1o), 1o〉] ~Q ) |
| 19 | 14, 18 | eqtr2d 2263 | 1 ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 (class class class)co 6007 1oc1o 6561 [cec 6686 Ncnpi 7467 +N cpli 7468 ·N cmi 7469 ~Q ceq 7474 1Qc1q 7476 +Q cplq 7477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-plpq 7539 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-1nqqs 7546 |
| This theorem is referenced by: pitonnlem2 8042 |
| Copyright terms: Public domain | W3C validator |