ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpinq1 GIF version

Theorem addpinq1 7265
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
Assertion
Ref Expression
addpinq1 (𝐴N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q))

Proof of Theorem addpinq1
StepHypRef Expression
1 df-1nqqs 7152 . . . . 5 1Q = [⟨1o, 1o⟩] ~Q
21oveq2i 5778 . . . 4 ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q )
3 1pi 7116 . . . . 5 1oN
4 addpipqqs 7171 . . . . . 6 (((𝐴N ∧ 1oN) ∧ (1oN ∧ 1oN)) → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
53, 3, 4mpanr12 435 . . . . 5 ((𝐴N ∧ 1oN) → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
63, 5mpan2 421 . . . 4 (𝐴N → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
72, 6syl5eq 2182 . . 3 (𝐴N → ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
8 mulidpi 7119 . . . . . . 7 (1oN → (1o ·N 1o) = 1o)
93, 8ax-mp 5 . . . . . 6 (1o ·N 1o) = 1o
109oveq2i 5778 . . . . 5 ((𝐴 ·N 1o) +N (1o ·N 1o)) = ((𝐴 ·N 1o) +N 1o)
1110, 9opeq12i 3705 . . . 4 ⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨((𝐴 ·N 1o) +N 1o), 1o
12 eceq1 6457 . . . 4 (⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨((𝐴 ·N 1o) +N 1o), 1o⟩ → [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q )
1311, 12ax-mp 5 . . 3 [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q
147, 13syl6eq 2186 . 2 (𝐴N → ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q )
15 mulidpi 7119 . . . . 5 (𝐴N → (𝐴 ·N 1o) = 𝐴)
1615oveq1d 5782 . . . 4 (𝐴N → ((𝐴 ·N 1o) +N 1o) = (𝐴 +N 1o))
1716opeq1d 3706 . . 3 (𝐴N → ⟨((𝐴 ·N 1o) +N 1o), 1o⟩ = ⟨(𝐴 +N 1o), 1o⟩)
1817eceq1d 6458 . 2 (𝐴N → [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q = [⟨(𝐴 +N 1o), 1o⟩] ~Q )
1914, 18eqtr2d 2171 1 (𝐴N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cop 3525  (class class class)co 5767  1oc1o 6299  [cec 6420  Ncnpi 7073   +N cpli 7074   ·N cmi 7075   ~Q ceq 7080  1Qc1q 7082   +Q cplq 7083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-plpq 7145  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-1nqqs 7152
This theorem is referenced by:  pitonnlem2  7648
  Copyright terms: Public domain W3C validator