![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addpinq1 | GIF version |
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
addpinq1 | ⊢ (𝐴 ∈ N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nqqs 7352 | . . . . 5 ⊢ 1Q = [⟨1o, 1o⟩] ~Q | |
2 | 1 | oveq2i 5888 | . . . 4 ⊢ ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) |
3 | 1pi 7316 | . . . . 5 ⊢ 1o ∈ N | |
4 | addpipqqs 7371 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ) | |
5 | 3, 3, 4 | mpanr12 439 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ) |
6 | 3, 5 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ N → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ) |
7 | 2, 6 | eqtrid 2222 | . . 3 ⊢ (𝐴 ∈ N → ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q ) |
8 | mulidpi 7319 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
10 | 9 | oveq2i 5888 | . . . . 5 ⊢ ((𝐴 ·N 1o) +N (1o ·N 1o)) = ((𝐴 ·N 1o) +N 1o) |
11 | 10, 9 | opeq12i 3785 | . . . 4 ⊢ ⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨((𝐴 ·N 1o) +N 1o), 1o⟩ |
12 | eceq1 6572 | . . . 4 ⊢ (⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨((𝐴 ·N 1o) +N 1o), 1o⟩ → [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q ) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q |
14 | 7, 13 | eqtrdi 2226 | . 2 ⊢ (𝐴 ∈ N → ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q ) |
15 | mulidpi 7319 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
16 | 15 | oveq1d 5892 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1o) +N 1o) = (𝐴 +N 1o)) |
17 | 16 | opeq1d 3786 | . . 3 ⊢ (𝐴 ∈ N → ⟨((𝐴 ·N 1o) +N 1o), 1o⟩ = ⟨(𝐴 +N 1o), 1o⟩) |
18 | 17 | eceq1d 6573 | . 2 ⊢ (𝐴 ∈ N → [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q = [⟨(𝐴 +N 1o), 1o⟩] ~Q ) |
19 | 14, 18 | eqtr2d 2211 | 1 ⊢ (𝐴 ∈ N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 (class class class)co 5877 1oc1o 6412 [cec 6535 Ncnpi 7273 +N cpli 7274 ·N cmi 7275 ~Q ceq 7280 1Qc1q 7282 +Q cplq 7283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-plpq 7345 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-1nqqs 7352 |
This theorem is referenced by: pitonnlem2 7848 |
Copyright terms: Public domain | W3C validator |