Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addpinq1 | GIF version |
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
addpinq1 | ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nqqs 7254 | . . . . 5 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
2 | 1 | oveq2i 5829 | . . . 4 ⊢ ([〈𝐴, 1o〉] ~Q +Q 1Q) = ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
3 | 1pi 7218 | . . . . 5 ⊢ 1o ∈ N | |
4 | addpipqqs 7273 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
5 | 3, 3, 4 | mpanr12 436 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
6 | 3, 5 | mpan2 422 | . . . 4 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
7 | 2, 6 | syl5eq 2202 | . . 3 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
8 | mulidpi 7221 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
10 | 9 | oveq2i 5829 | . . . . 5 ⊢ ((𝐴 ·N 1o) +N (1o ·N 1o)) = ((𝐴 ·N 1o) +N 1o) |
11 | 10, 9 | opeq12i 3746 | . . . 4 ⊢ 〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 |
12 | eceq1 6508 | . . . 4 ⊢ (〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 → [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q |
14 | 7, 13 | eqtrdi 2206 | . 2 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) |
15 | mulidpi 7221 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
16 | 15 | oveq1d 5833 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1o) +N 1o) = (𝐴 +N 1o)) |
17 | 16 | opeq1d 3747 | . . 3 ⊢ (𝐴 ∈ N → 〈((𝐴 ·N 1o) +N 1o), 1o〉 = 〈(𝐴 +N 1o), 1o〉) |
18 | 17 | eceq1d 6509 | . 2 ⊢ (𝐴 ∈ N → [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q = [〈(𝐴 +N 1o), 1o〉] ~Q ) |
19 | 14, 18 | eqtr2d 2191 | 1 ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 〈cop 3563 (class class class)co 5818 1oc1o 6350 [cec 6471 Ncnpi 7175 +N cpli 7176 ·N cmi 7177 ~Q ceq 7182 1Qc1q 7184 +Q cplq 7185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-plpq 7247 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-1nqqs 7254 |
This theorem is referenced by: pitonnlem2 7750 |
Copyright terms: Public domain | W3C validator |