| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addpinq1 | GIF version | ||
| Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| addpinq1 | ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1nqqs 7477 | . . . . 5 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 2 | 1 | oveq2i 5965 | . . . 4 ⊢ ([〈𝐴, 1o〉] ~Q +Q 1Q) = ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
| 3 | 1pi 7441 | . . . . 5 ⊢ 1o ∈ N | |
| 4 | addpipqqs 7496 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
| 5 | 3, 3, 4 | mpanr12 439 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
| 6 | 3, 5 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
| 7 | 2, 6 | eqtrid 2251 | . . 3 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
| 8 | mulidpi 7444 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
| 9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
| 10 | 9 | oveq2i 5965 | . . . . 5 ⊢ ((𝐴 ·N 1o) +N (1o ·N 1o)) = ((𝐴 ·N 1o) +N 1o) |
| 11 | 10, 9 | opeq12i 3827 | . . . 4 ⊢ 〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 |
| 12 | eceq1 6665 | . . . 4 ⊢ (〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 → [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q |
| 14 | 7, 13 | eqtrdi 2255 | . 2 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) |
| 15 | mulidpi 7444 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
| 16 | 15 | oveq1d 5969 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1o) +N 1o) = (𝐴 +N 1o)) |
| 17 | 16 | opeq1d 3828 | . . 3 ⊢ (𝐴 ∈ N → 〈((𝐴 ·N 1o) +N 1o), 1o〉 = 〈(𝐴 +N 1o), 1o〉) |
| 18 | 17 | eceq1d 6666 | . 2 ⊢ (𝐴 ∈ N → [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q = [〈(𝐴 +N 1o), 1o〉] ~Q ) |
| 19 | 14, 18 | eqtr2d 2240 | 1 ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3638 (class class class)co 5954 1oc1o 6505 [cec 6628 Ncnpi 7398 +N cpli 7399 ·N cmi 7400 ~Q ceq 7405 1Qc1q 7407 +Q cplq 7408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-plpq 7470 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-1nqqs 7477 |
| This theorem is referenced by: pitonnlem2 7973 |
| Copyright terms: Public domain | W3C validator |