ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpinq1 GIF version

Theorem addpinq1 7405
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
Assertion
Ref Expression
addpinq1 (𝐴N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q))

Proof of Theorem addpinq1
StepHypRef Expression
1 df-1nqqs 7292 . . . . 5 1Q = [⟨1o, 1o⟩] ~Q
21oveq2i 5853 . . . 4 ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q )
3 1pi 7256 . . . . 5 1oN
4 addpipqqs 7311 . . . . . 6 (((𝐴N ∧ 1oN) ∧ (1oN ∧ 1oN)) → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
53, 3, 4mpanr12 436 . . . . 5 ((𝐴N ∧ 1oN) → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
63, 5mpan2 422 . . . 4 (𝐴N → ([⟨𝐴, 1o⟩] ~Q +Q [⟨1o, 1o⟩] ~Q ) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
72, 6syl5eq 2211 . . 3 (𝐴N → ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q )
8 mulidpi 7259 . . . . . . 7 (1oN → (1o ·N 1o) = 1o)
93, 8ax-mp 5 . . . . . 6 (1o ·N 1o) = 1o
109oveq2i 5853 . . . . 5 ((𝐴 ·N 1o) +N (1o ·N 1o)) = ((𝐴 ·N 1o) +N 1o)
1110, 9opeq12i 3763 . . . 4 ⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨((𝐴 ·N 1o) +N 1o), 1o
12 eceq1 6536 . . . 4 (⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩ = ⟨((𝐴 ·N 1o) +N 1o), 1o⟩ → [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q )
1311, 12ax-mp 5 . . 3 [⟨((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)⟩] ~Q = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q
147, 13eqtrdi 2215 . 2 (𝐴N → ([⟨𝐴, 1o⟩] ~Q +Q 1Q) = [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q )
15 mulidpi 7259 . . . . 5 (𝐴N → (𝐴 ·N 1o) = 𝐴)
1615oveq1d 5857 . . . 4 (𝐴N → ((𝐴 ·N 1o) +N 1o) = (𝐴 +N 1o))
1716opeq1d 3764 . . 3 (𝐴N → ⟨((𝐴 ·N 1o) +N 1o), 1o⟩ = ⟨(𝐴 +N 1o), 1o⟩)
1817eceq1d 6537 . 2 (𝐴N → [⟨((𝐴 ·N 1o) +N 1o), 1o⟩] ~Q = [⟨(𝐴 +N 1o), 1o⟩] ~Q )
1914, 18eqtr2d 2199 1 (𝐴N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cop 3579  (class class class)co 5842  1oc1o 6377  [cec 6499  Ncnpi 7213   +N cpli 7214   ·N cmi 7215   ~Q ceq 7220  1Qc1q 7222   +Q cplq 7223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-plpq 7285  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-1nqqs 7292
This theorem is referenced by:  pitonnlem2  7788
  Copyright terms: Public domain W3C validator