![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addpinq1 | GIF version |
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
addpinq1 | ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nqqs 7368 | . . . . 5 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
2 | 1 | oveq2i 5902 | . . . 4 ⊢ ([〈𝐴, 1o〉] ~Q +Q 1Q) = ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) |
3 | 1pi 7332 | . . . . 5 ⊢ 1o ∈ N | |
4 | addpipqqs 7387 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 1o ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) | |
5 | 3, 3, 4 | mpanr12 439 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
6 | 3, 5 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q [〈1o, 1o〉] ~Q ) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
7 | 2, 6 | eqtrid 2234 | . . 3 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q ) |
8 | mulidpi 7335 | . . . . . . 7 ⊢ (1o ∈ N → (1o ·N 1o) = 1o) | |
9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ (1o ·N 1o) = 1o |
10 | 9 | oveq2i 5902 | . . . . 5 ⊢ ((𝐴 ·N 1o) +N (1o ·N 1o)) = ((𝐴 ·N 1o) +N 1o) |
11 | 10, 9 | opeq12i 3798 | . . . 4 ⊢ 〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 |
12 | eceq1 6588 | . . . 4 ⊢ (〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉 = 〈((𝐴 ·N 1o) +N 1o), 1o〉 → [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ [〈((𝐴 ·N 1o) +N (1o ·N 1o)), (1o ·N 1o)〉] ~Q = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q |
14 | 7, 13 | eqtrdi 2238 | . 2 ⊢ (𝐴 ∈ N → ([〈𝐴, 1o〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q ) |
15 | mulidpi 7335 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
16 | 15 | oveq1d 5906 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1o) +N 1o) = (𝐴 +N 1o)) |
17 | 16 | opeq1d 3799 | . . 3 ⊢ (𝐴 ∈ N → 〈((𝐴 ·N 1o) +N 1o), 1o〉 = 〈(𝐴 +N 1o), 1o〉) |
18 | 17 | eceq1d 6589 | . 2 ⊢ (𝐴 ∈ N → [〈((𝐴 ·N 1o) +N 1o), 1o〉] ~Q = [〈(𝐴 +N 1o), 1o〉] ~Q ) |
19 | 14, 18 | eqtr2d 2223 | 1 ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 〈cop 3610 (class class class)co 5891 1oc1o 6428 [cec 6551 Ncnpi 7289 +N cpli 7290 ·N cmi 7291 ~Q ceq 7296 1Qc1q 7298 +Q cplq 7299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-irdg 6389 df-1o 6435 df-oadd 6439 df-omul 6440 df-er 6553 df-ec 6555 df-qs 6559 df-ni 7321 df-pli 7322 df-mi 7323 df-plpq 7361 df-enq 7364 df-nqqs 7365 df-plqqs 7366 df-1nqqs 7368 |
This theorem is referenced by: pitonnlem2 7864 |
Copyright terms: Public domain | W3C validator |