| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addresr | GIF version | ||
| Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| addresr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r 7945 | . . 3 ⊢ 0R ∈ R | |
| 2 | addcnsr 8029 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R ∈ R) ∧ (𝐵 ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), (0R +R 0R)〉) | |
| 3 | 2 | an4s 590 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), (0R +R 0R)〉) |
| 4 | 1, 1, 3 | mpanr12 439 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), (0R +R 0R)〉) |
| 5 | 0idsr 7962 | . . . 4 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
| 6 | 1, 5 | ax-mp 5 | . . 3 ⊢ (0R +R 0R) = 0R |
| 7 | 6 | opeq2i 3861 | . 2 ⊢ 〈(𝐴 +R 𝐵), (0R +R 0R)〉 = 〈(𝐴 +R 𝐵), 0R〉 |
| 8 | 4, 7 | eqtrdi 2278 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 (class class class)co 6007 Rcnr 7492 0Rc0r 7493 +R cplr 7496 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-2o 6569 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 df-enq0 7619 df-nq0 7620 df-0nq0 7621 df-plq0 7622 df-mq0 7623 df-inp 7661 df-i1p 7662 df-iplp 7663 df-enr 7921 df-nr 7922 df-plr 7923 df-0r 7926 df-c 8013 df-add 8018 |
| This theorem is referenced by: pitonnlem2 8042 axaddrcl 8060 axi2m1 8070 axrnegex 8074 axpre-ltadd 8081 axcaucvglemcau 8093 axcaucvglemres 8094 |
| Copyright terms: Public domain | W3C validator |