ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addresr GIF version

Theorem addresr 7374
Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
addresr ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩)

Proof of Theorem addresr
StepHypRef Expression
1 0r 7296 . . 3 0RR
2 addcnsr 7371 . . . 4 (((𝐴R ∧ 0RR) ∧ (𝐵R ∧ 0RR)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
32an4s 555 . . 3 (((𝐴R𝐵R) ∧ (0RR ∧ 0RR)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
41, 1, 3mpanr12 430 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
5 0idsr 7313 . . . 4 (0RR → (0R +R 0R) = 0R)
61, 5ax-mp 7 . . 3 (0R +R 0R) = 0R
76opeq2i 3626 . 2 ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩ = ⟨(𝐴 +R 𝐵), 0R
84, 7syl6eq 2136 1 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  cop 3449  (class class class)co 5652  Rcnr 6856  0Rc0r 6857   +R cplr 6860   + caddc 7353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6292  df-ec 6294  df-qs 6298  df-ni 6863  df-pli 6864  df-mi 6865  df-lti 6866  df-plpq 6903  df-mpq 6904  df-enq 6906  df-nqqs 6907  df-plqqs 6908  df-mqqs 6909  df-1nqqs 6910  df-rq 6911  df-ltnqqs 6912  df-enq0 6983  df-nq0 6984  df-0nq0 6985  df-plq0 6986  df-mq0 6987  df-inp 7025  df-i1p 7026  df-iplp 7027  df-enr 7272  df-nr 7273  df-plr 7274  df-0r 7277  df-c 7356  df-add 7361
This theorem is referenced by:  pitonnlem2  7384  axaddrcl  7402  axi2m1  7410  axrnegex  7414  axpre-ltadd  7421  axcaucvglemcau  7433  axcaucvglemres  7434
  Copyright terms: Public domain W3C validator