Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0idsr | GIF version |
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
Ref | Expression |
---|---|
0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7689 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | oveq1 5860 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
3 | id 19 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
4 | 2, 3 | eqeq12d 2185 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
5 | df-0r 7693 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
6 | 5 | oveq2i 5864 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
7 | 1pr 7516 | . . . . 5 ⊢ 1P ∈ P | |
8 | addsrpr 7707 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
9 | 7, 7, 8 | mpanr12 437 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
10 | simpl 108 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑥 ∈ P) | |
11 | simpr 109 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑦 ∈ P) | |
12 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 1P ∈ P) |
13 | addcomprg 7540 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) | |
14 | 13 | adantl 275 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) |
15 | addassprg 7541 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) | |
16 | 15 | adantl 275 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) |
17 | 10, 11, 12, 14, 16 | caov12d 6034 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))) |
18 | addclpr 7499 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
19 | 7, 18 | mpan2 423 | . . . . . . 7 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
20 | addclpr 7499 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
21 | 7, 20 | mpan2 423 | . . . . . . 7 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
22 | 19, 21 | anim12i 336 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
23 | enreceq 7698 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
24 | 22, 23 | mpdan 419 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) |
25 | 17, 24 | mpbird 166 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
26 | 9, 25 | eqtr4d 2206 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
27 | 6, 26 | eqtrid 2215 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
28 | 1, 4, 27 | ecoptocl 6600 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 〈cop 3586 (class class class)co 5853 [cec 6511 Pcnp 7253 1Pc1p 7254 +P cpp 7255 ~R cer 7258 Rcnr 7259 0Rc0r 7260 +R cplr 7263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-enr 7688 df-nr 7689 df-plr 7690 df-0r 7693 |
This theorem is referenced by: addgt0sr 7737 ltadd1sr 7738 ltm1sr 7739 caucvgsrlemoffval 7758 caucvgsrlemoffres 7762 caucvgsr 7764 map2psrprg 7767 suplocsrlempr 7769 addresr 7799 mulresr 7800 axi2m1 7837 ax0id 7840 axcnre 7843 |
Copyright terms: Public domain | W3C validator |