Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0idsr | GIF version |
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
Ref | Expression |
---|---|
0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7626 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | oveq1 5821 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
3 | id 19 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
4 | 2, 3 | eqeq12d 2169 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
5 | df-0r 7630 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
6 | 5 | oveq2i 5825 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
7 | 1pr 7453 | . . . . 5 ⊢ 1P ∈ P | |
8 | addsrpr 7644 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
9 | 7, 7, 8 | mpanr12 436 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
10 | simpl 108 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑥 ∈ P) | |
11 | simpr 109 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑦 ∈ P) | |
12 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 1P ∈ P) |
13 | addcomprg 7477 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) | |
14 | 13 | adantl 275 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) |
15 | addassprg 7478 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) | |
16 | 15 | adantl 275 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) |
17 | 10, 11, 12, 14, 16 | caov12d 5992 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))) |
18 | addclpr 7436 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
19 | 7, 18 | mpan2 422 | . . . . . . 7 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
20 | addclpr 7436 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
21 | 7, 20 | mpan2 422 | . . . . . . 7 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
22 | 19, 21 | anim12i 336 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
23 | enreceq 7635 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
24 | 22, 23 | mpdan 418 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) |
25 | 17, 24 | mpbird 166 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
26 | 9, 25 | eqtr4d 2190 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
27 | 6, 26 | syl5eq 2199 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
28 | 1, 4, 27 | ecoptocl 6556 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 〈cop 3559 (class class class)co 5814 [cec 6467 Pcnp 7190 1Pc1p 7191 +P cpp 7192 ~R cer 7195 Rcnr 7196 0Rc0r 7197 +R cplr 7200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-eprel 4244 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-1o 6353 df-2o 6354 df-oadd 6357 df-omul 6358 df-er 6469 df-ec 6471 df-qs 6475 df-ni 7203 df-pli 7204 df-mi 7205 df-lti 7206 df-plpq 7243 df-mpq 7244 df-enq 7246 df-nqqs 7247 df-plqqs 7248 df-mqqs 7249 df-1nqqs 7250 df-rq 7251 df-ltnqqs 7252 df-enq0 7323 df-nq0 7324 df-0nq0 7325 df-plq0 7326 df-mq0 7327 df-inp 7365 df-i1p 7366 df-iplp 7367 df-enr 7625 df-nr 7626 df-plr 7627 df-0r 7630 |
This theorem is referenced by: addgt0sr 7674 ltadd1sr 7675 ltm1sr 7676 caucvgsrlemoffval 7695 caucvgsrlemoffres 7699 caucvgsr 7701 map2psrprg 7704 suplocsrlempr 7706 addresr 7736 mulresr 7737 axi2m1 7774 ax0id 7777 axcnre 7780 |
Copyright terms: Public domain | W3C validator |