ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0idsr GIF version

Theorem 0idsr 7893
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
Assertion
Ref Expression
0idsr (𝐴R → (𝐴 +R 0R) = 𝐴)

Proof of Theorem 0idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7853 . 2 R = ((P × P) / ~R )
2 oveq1 5961 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = (𝐴 +R 0R))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2221 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 +R 0R) = 𝐴))
5 df-0r 7857 . . . 4 0R = [⟨1P, 1P⟩] ~R
65oveq2i 5965 . . 3 ([⟨𝑥, 𝑦⟩] ~R +R 0R) = ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R )
7 1pr 7680 . . . . 5 1PP
8 addsrpr 7871 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
97, 7, 8mpanr12 439 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
10 simpl 109 . . . . . 6 ((𝑥P𝑦P) → 𝑥P)
11 simpr 110 . . . . . 6 ((𝑥P𝑦P) → 𝑦P)
127a1i 9 . . . . . 6 ((𝑥P𝑦P) → 1PP)
13 addcomprg 7704 . . . . . . 7 ((𝑧P𝑤P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
1413adantl 277 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
15 addassprg 7705 . . . . . . 7 ((𝑧P𝑤P𝑣P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
1615adantl 277 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P𝑣P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
1710, 11, 12, 14, 16caov12d 6138 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))
18 addclpr 7663 . . . . . . . 8 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
197, 18mpan2 425 . . . . . . 7 (𝑥P → (𝑥 +P 1P) ∈ P)
20 addclpr 7663 . . . . . . . 8 ((𝑦P ∧ 1PP) → (𝑦 +P 1P) ∈ P)
217, 20mpan2 425 . . . . . . 7 (𝑦P → (𝑦 +P 1P) ∈ P)
2219, 21anim12i 338 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P))
23 enreceq 7862 . . . . . 6 (((𝑥P𝑦P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))))
2422, 23mpdan 421 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))))
2517, 24mpbird 167 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
269, 25eqtr4d 2242 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
276, 26eqtrid 2251 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R )
281, 4, 27ecoptocl 6719 1 (𝐴R → (𝐴 +R 0R) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  cop 3638  (class class class)co 5954  [cec 6628  Pcnp 7417  1Pc1p 7418   +P cpp 7419   ~R cer 7422  Rcnr 7423  0Rc0r 7424   +R cplr 7427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-2o 6513  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-enq0 7550  df-nq0 7551  df-0nq0 7552  df-plq0 7553  df-mq0 7554  df-inp 7592  df-i1p 7593  df-iplp 7594  df-enr 7852  df-nr 7853  df-plr 7854  df-0r 7857
This theorem is referenced by:  addgt0sr  7901  ltadd1sr  7902  ltm1sr  7903  caucvgsrlemoffval  7922  caucvgsrlemoffres  7926  caucvgsr  7928  map2psrprg  7931  suplocsrlempr  7933  addresr  7963  mulresr  7964  axi2m1  8001  ax0id  8004  axcnre  8007
  Copyright terms: Public domain W3C validator