| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0idsr | GIF version | ||
| Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
| Ref | Expression |
|---|---|
| 0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7902 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 6001 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
| 3 | id 19 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2244 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
| 5 | df-0r 7906 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 6 | 5 | oveq2i 6005 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
| 7 | 1pr 7729 | . . . . 5 ⊢ 1P ∈ P | |
| 8 | addsrpr 7920 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
| 9 | 7, 7, 8 | mpanr12 439 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 10 | simpl 109 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑥 ∈ P) | |
| 11 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑦 ∈ P) | |
| 12 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 1P ∈ P) |
| 13 | addcomprg 7753 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) | |
| 14 | 13 | adantl 277 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) |
| 15 | addassprg 7754 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) | |
| 16 | 15 | adantl 277 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) |
| 17 | 10, 11, 12, 14, 16 | caov12d 6178 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))) |
| 18 | addclpr 7712 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
| 19 | 7, 18 | mpan2 425 | . . . . . . 7 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
| 20 | addclpr 7712 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
| 21 | 7, 20 | mpan2 425 | . . . . . . 7 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
| 22 | 19, 21 | anim12i 338 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
| 23 | enreceq 7911 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
| 24 | 22, 23 | mpdan 421 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) |
| 25 | 17, 24 | mpbird 167 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
| 26 | 9, 25 | eqtr4d 2265 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
| 27 | 6, 26 | eqtrid 2274 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
| 28 | 1, 4, 27 | ecoptocl 6759 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 〈cop 3669 (class class class)co 5994 [cec 6668 Pcnp 7466 1Pc1p 7467 +P cpp 7468 ~R cer 7471 Rcnr 7472 0Rc0r 7473 +R cplr 7476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-2o 6553 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-enq0 7599 df-nq0 7600 df-0nq0 7601 df-plq0 7602 df-mq0 7603 df-inp 7641 df-i1p 7642 df-iplp 7643 df-enr 7901 df-nr 7902 df-plr 7903 df-0r 7906 |
| This theorem is referenced by: addgt0sr 7950 ltadd1sr 7951 ltm1sr 7952 caucvgsrlemoffval 7971 caucvgsrlemoffres 7975 caucvgsr 7977 map2psrprg 7980 suplocsrlempr 7982 addresr 8012 mulresr 8013 axi2m1 8050 ax0id 8053 axcnre 8056 |
| Copyright terms: Public domain | W3C validator |