ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0idsr GIF version

Theorem 0idsr 7729
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
Assertion
Ref Expression
0idsr (𝐴R → (𝐴 +R 0R) = 𝐴)

Proof of Theorem 0idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7689 . 2 R = ((P × P) / ~R )
2 oveq1 5860 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = (𝐴 +R 0R))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2185 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 +R 0R) = 𝐴))
5 df-0r 7693 . . . 4 0R = [⟨1P, 1P⟩] ~R
65oveq2i 5864 . . 3 ([⟨𝑥, 𝑦⟩] ~R +R 0R) = ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R )
7 1pr 7516 . . . . 5 1PP
8 addsrpr 7707 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
97, 7, 8mpanr12 437 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
10 simpl 108 . . . . . 6 ((𝑥P𝑦P) → 𝑥P)
11 simpr 109 . . . . . 6 ((𝑥P𝑦P) → 𝑦P)
127a1i 9 . . . . . 6 ((𝑥P𝑦P) → 1PP)
13 addcomprg 7540 . . . . . . 7 ((𝑧P𝑤P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
1413adantl 275 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
15 addassprg 7541 . . . . . . 7 ((𝑧P𝑤P𝑣P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
1615adantl 275 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P𝑣P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
1710, 11, 12, 14, 16caov12d 6034 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))
18 addclpr 7499 . . . . . . . 8 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
197, 18mpan2 423 . . . . . . 7 (𝑥P → (𝑥 +P 1P) ∈ P)
20 addclpr 7499 . . . . . . . 8 ((𝑦P ∧ 1PP) → (𝑦 +P 1P) ∈ P)
217, 20mpan2 423 . . . . . . 7 (𝑦P → (𝑦 +P 1P) ∈ P)
2219, 21anim12i 336 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P))
23 enreceq 7698 . . . . . 6 (((𝑥P𝑦P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))))
2422, 23mpdan 419 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))))
2517, 24mpbird 166 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
269, 25eqtr4d 2206 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
276, 26eqtrid 2215 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R )
281, 4, 27ecoptocl 6600 1 (𝐴R → (𝐴 +R 0R) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3586  (class class class)co 5853  [cec 6511  Pcnp 7253  1Pc1p 7254   +P cpp 7255   ~R cer 7258  Rcnr 7259  0Rc0r 7260   +R cplr 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-enr 7688  df-nr 7689  df-plr 7690  df-0r 7693
This theorem is referenced by:  addgt0sr  7737  ltadd1sr  7738  ltm1sr  7739  caucvgsrlemoffval  7758  caucvgsrlemoffres  7762  caucvgsr  7764  map2psrprg  7767  suplocsrlempr  7769  addresr  7799  mulresr  7800  axi2m1  7837  ax0id  7840  axcnre  7843
  Copyright terms: Public domain W3C validator