ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0idsr GIF version

Theorem 0idsr 7708
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
Assertion
Ref Expression
0idsr (𝐴R → (𝐴 +R 0R) = 𝐴)

Proof of Theorem 0idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7668 . 2 R = ((P × P) / ~R )
2 oveq1 5849 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = (𝐴 +R 0R))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2180 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 +R 0R) = 𝐴))
5 df-0r 7672 . . . 4 0R = [⟨1P, 1P⟩] ~R
65oveq2i 5853 . . 3 ([⟨𝑥, 𝑦⟩] ~R +R 0R) = ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R )
7 1pr 7495 . . . . 5 1PP
8 addsrpr 7686 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
97, 7, 8mpanr12 436 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
10 simpl 108 . . . . . 6 ((𝑥P𝑦P) → 𝑥P)
11 simpr 109 . . . . . 6 ((𝑥P𝑦P) → 𝑦P)
127a1i 9 . . . . . 6 ((𝑥P𝑦P) → 1PP)
13 addcomprg 7519 . . . . . . 7 ((𝑧P𝑤P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
1413adantl 275 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
15 addassprg 7520 . . . . . . 7 ((𝑧P𝑤P𝑣P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
1615adantl 275 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P𝑣P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
1710, 11, 12, 14, 16caov12d 6023 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))
18 addclpr 7478 . . . . . . . 8 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
197, 18mpan2 422 . . . . . . 7 (𝑥P → (𝑥 +P 1P) ∈ P)
20 addclpr 7478 . . . . . . . 8 ((𝑦P ∧ 1PP) → (𝑦 +P 1P) ∈ P)
217, 20mpan2 422 . . . . . . 7 (𝑦P → (𝑦 +P 1P) ∈ P)
2219, 21anim12i 336 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P))
23 enreceq 7677 . . . . . 6 (((𝑥P𝑦P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))))
2422, 23mpdan 418 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))))
2517, 24mpbird 166 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨(𝑥 +P 1P), (𝑦 +P 1P)⟩] ~R )
269, 25eqtr4d 2201 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨1P, 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
276, 26syl5eq 2211 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R +R 0R) = [⟨𝑥, 𝑦⟩] ~R )
281, 4, 27ecoptocl 6588 1 (𝐴R → (𝐴 +R 0R) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  cop 3579  (class class class)co 5842  [cec 6499  Pcnp 7232  1Pc1p 7233   +P cpp 7234   ~R cer 7237  Rcnr 7238  0Rc0r 7239   +R cplr 7242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-enr 7667  df-nr 7668  df-plr 7669  df-0r 7672
This theorem is referenced by:  addgt0sr  7716  ltadd1sr  7717  ltm1sr  7718  caucvgsrlemoffval  7737  caucvgsrlemoffres  7741  caucvgsr  7743  map2psrprg  7746  suplocsrlempr  7748  addresr  7778  mulresr  7779  axi2m1  7816  ax0id  7819  axcnre  7822
  Copyright terms: Public domain W3C validator