ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem3 GIF version

Theorem pythagtriplem3 12590
Description: Lemma for pythagtrip 12606. Show that 𝐶 and 𝐵 are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1)

Proof of Theorem pythagtriplem3
StepHypRef Expression
1 oveq2 5952 . . . . . . 7 (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2)))
21adantl 277 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2)))
3 nnz 9391 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 zsqcl 10755 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
53, 4syl 14 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℤ)
653ad2ant2 1022 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℤ)
7 nnz 9391 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
8 zsqcl 10755 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
97, 8syl 14 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℤ)
1093ad2ant1 1021 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
11 gcdadd 12306 . . . . . . . . 9 (((𝐵↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))))
126, 10, 11syl2anc 411 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))))
136, 10gcdcomd 12295 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐴↑2) gcd (𝐵↑2)))
1412, 13eqtr3d 2240 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2)))
1514adantr 276 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2)))
162, 15eqtr3d 2240 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd (𝐶↑2)) = ((𝐴↑2) gcd (𝐵↑2)))
17 simpl2 1004 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐵 ∈ ℕ)
18 simpl3 1005 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐶 ∈ ℕ)
19 sqgcd 12350 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2)))
2017, 18, 19syl2anc 411 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2)))
21 simpl1 1003 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐴 ∈ ℕ)
22 sqgcd 12350 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
2321, 17, 22syl2anc 411 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
2416, 20, 233eqtr4d 2248 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2))
25243adant3 1020 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2))
26 simp3l 1028 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1)
2726oveq1d 5959 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐴 gcd 𝐵)↑2) = (1↑2))
2825, 27eqtrd 2238 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = (1↑2))
2933ad2ant2 1022 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
30 nnz 9391 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
31303ad2ant3 1023 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3229, 31gcdcld 12289 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈ ℕ0)
3332nn0red 9349 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈ ℝ)
34333ad2ant1 1021 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) ∈ ℝ)
3532nn0ge0d 9351 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐵 gcd 𝐶))
36353ad2ant1 1021 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐵 gcd 𝐶))
37 1re 8071 . . . 4 1 ∈ ℝ
38 0le1 8554 . . . 4 0 ≤ 1
39 sq11 10757 . . . 4 ((((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1))
4037, 38, 39mpanr12 439 . . 3 (((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1))
4134, 36, 40syl2anc 411 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1))
4228, 41mpbid 147 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176   class class class wbr 4044  (class class class)co 5944  cr 7924  0cc0 7925  1c1 7926   + caddc 7928  cle 8108  cn 9036  2c2 9087  cz 9372  cexp 10683  cdvds 12098   gcd cgcd 12274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275
This theorem is referenced by:  pythagtriplem4  12591
  Copyright terms: Public domain W3C validator