ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crim GIF version

Theorem crim 10346
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)

Proof of Theorem crim
StepHypRef Expression
1 recn 7529 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 7494 . . . . 5 i ∈ ℂ
3 recn 7529 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 7523 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 406 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 7521 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 284 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 imval 10338 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
97, 8syl 14 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
102, 4mpan 416 . . . . . 6 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
11 iap0 8693 . . . . . . 7 i # 0
12 divdirap 8218 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ ∧ (i ∈ ℂ ∧ i # 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
13123expa 1144 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) ∧ (i ∈ ℂ ∧ i # 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
142, 11, 13mpanr12 431 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
1510, 14sylan2 281 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
16 divrecap2 8210 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i # 0) → (𝐴 / i) = ((1 / i) · 𝐴))
172, 11, 16mp3an23 1266 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / i) = ((1 / i) · 𝐴))
18 irec 10108 . . . . . . . . 9 (1 / i) = -i
1918oveq1i 5676 . . . . . . . 8 ((1 / i) · 𝐴) = (-i · 𝐴)
2019a1i 9 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · 𝐴) = (-i · 𝐴))
21 mulneg12 7929 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
222, 21mpan 416 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
2317, 20, 223eqtrd 2125 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) = (i · -𝐴))
24 divcanap3 8219 . . . . . . 7 ((𝐵 ∈ ℂ ∧ i ∈ ℂ ∧ i # 0) → ((i · 𝐵) / i) = 𝐵)
252, 11, 24mp3an23 1266 . . . . . 6 (𝐵 ∈ ℂ → ((i · 𝐵) / i) = 𝐵)
2623, 25oveqan12d 5685 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 / i) + ((i · 𝐵) / i)) = ((i · -𝐴) + 𝐵))
27 negcl 7736 . . . . . . 7 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
28 mulcl 7523 . . . . . . 7 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
292, 27, 28sylancr 406 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
30 addcom 7673 . . . . . 6 (((i · -𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3129, 30sylan 278 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3215, 26, 313eqtrrd 2126 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
331, 3, 32syl2an 284 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
3433fveq2d 5322 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
35 id 19 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
36 renegcl 7797 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
37 crre 10345 . . 3 ((𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
3835, 36, 37syl2anr 285 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
399, 34, 383eqtr2d 2127 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439   class class class wbr 3851  cfv 5028  (class class class)co 5666  cc 7402  cr 7403  0cc0 7404  1c1 7405  ici 7406   + caddc 7407   · cmul 7409  -cneg 7708   # cap 8112   / cdiv 8193  cre 10328  cim 10329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-po 4132  df-iso 4133  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-2 8535  df-cj 10330  df-re 10331  df-im 10332
This theorem is referenced by:  replim  10347  reim0  10349  remullem  10359  imcj  10363  imneg  10364  imadd  10365  imi  10388  crimi  10425  crimd  10465  absreimsq  10554
  Copyright terms: Public domain W3C validator