ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem2 GIF version

Theorem pitonnlem2 7821
Description: Lemma for pitonn 7822. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Distinct variable group:   𝐾,𝑙,𝑢

Proof of Theorem pitonnlem2
StepHypRef Expression
1 df-1 7794 . . . 4 1 = ⟨1R, 0R
21oveq2i 5876 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩)
3 nnprlu 7527 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
4 1pr 7528 . . . . . . . 8 1PP
5 addclpr 7511 . . . . . . . 8 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
63, 4, 5sylancl 413 . . . . . . 7 (𝐾N → (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7 opelxpi 4652 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
86, 4, 7sylancl 413 . . . . . 6 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
9 enrex 7711 . . . . . . 7 ~R ∈ V
109ecelqsi 6579 . . . . . 6 (⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
118, 10syl 14 . . . . 5 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
12 df-nr 7701 . . . . 5 R = ((P × P) / ~R )
1311, 12eleqtrrdi 2269 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
14 1sr 7725 . . . 4 1RR
15 addresr 7811 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR ∧ 1RR) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
1613, 14, 15sylancl 413 . . 3 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
172, 16eqtrid 2220 . 2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
18 pitonnlem1p1 7820 . . . . 5 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
196, 18syl 14 . . . 4 (𝐾N → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
20 df-1r 7706 . . . . . 6 1R = [⟨(1P +P 1P), 1P⟩] ~R
2120oveq2i 5876 . . . . 5 ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
22 addclpr 7511 . . . . . . . 8 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
234, 4, 22mp2an 426 . . . . . . 7 (1P +P 1P) ∈ P
24 addsrpr 7719 . . . . . . . 8 ((((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
254, 24mpanl2 435 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2623, 4, 25mpanr12 439 . . . . . 6 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
276, 26syl 14 . . . . 5 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2821, 27eqtrid 2220 . . . 4 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
29 addpinq1 7438 . . . . . . . . . . 11 (𝐾N → [⟨(𝐾 +N 1o), 1o⟩] ~Q = ([⟨𝐾, 1o⟩] ~Q +Q 1Q))
3029breq2d 4010 . . . . . . . . . 10 (𝐾N → (𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)))
3130abbidv 2293 . . . . . . . . 9 (𝐾N → {𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q } = {𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)})
3229breq1d 4008 . . . . . . . . . 10 (𝐾N → ([⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢 ↔ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢))
3332abbidv 2293 . . . . . . . . 9 (𝐾N → {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢})
3431, 33opeq12d 3782 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩)
35 nnnq 7396 . . . . . . . . 9 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
36 addnqpr1 7536 . . . . . . . . 9 ([⟨𝐾, 1o⟩] ~QQ → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3735, 36syl 14 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3834, 37eqtrd 2208 . . . . . . 7 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3938oveq1d 5880 . . . . . 6 (𝐾N → (⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P))
4039opeq1d 3780 . . . . 5 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩)
4140eceq1d 6561 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
4219, 28, 413eqtr4d 2218 . . 3 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
4342opeq1d 3780 . 2 (𝐾N → ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
4417, 43eqtrd 2208 1 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  {cab 2161  cop 3592   class class class wbr 3998   × cxp 4618  (class class class)co 5865  1oc1o 6400  [cec 6523   / cqs 6524  Ncnpi 7246   +N cpli 7247   ~Q ceq 7253  Qcnq 7254  1Qc1q 7255   +Q cplq 7256   <Q cltq 7259  Pcnp 7265  1Pc1p 7266   +P cpp 7267   ~R cer 7270  Rcnr 7271  0Rc0r 7272  1Rc1r 7273   +R cplr 7275  1c1 7787   + caddc 7789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440  df-i1p 7441  df-iplp 7442  df-enr 7700  df-nr 7701  df-plr 7702  df-0r 7705  df-1r 7706  df-c 7792  df-1 7794  df-add 7797
This theorem is referenced by:  pitonn  7822  nntopi  7868
  Copyright terms: Public domain W3C validator