ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem2 GIF version

Theorem pitonnlem2 7909
Description: Lemma for pitonn 7910. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Distinct variable group:   𝐾,𝑙,𝑢

Proof of Theorem pitonnlem2
StepHypRef Expression
1 df-1 7882 . . . 4 1 = ⟨1R, 0R
21oveq2i 5930 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩)
3 nnprlu 7615 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
4 1pr 7616 . . . . . . . 8 1PP
5 addclpr 7599 . . . . . . . 8 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
63, 4, 5sylancl 413 . . . . . . 7 (𝐾N → (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7 opelxpi 4692 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
86, 4, 7sylancl 413 . . . . . 6 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
9 enrex 7799 . . . . . . 7 ~R ∈ V
109ecelqsi 6645 . . . . . 6 (⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
118, 10syl 14 . . . . 5 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
12 df-nr 7789 . . . . 5 R = ((P × P) / ~R )
1311, 12eleqtrrdi 2287 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
14 1sr 7813 . . . 4 1RR
15 addresr 7899 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR ∧ 1RR) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
1613, 14, 15sylancl 413 . . 3 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
172, 16eqtrid 2238 . 2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
18 pitonnlem1p1 7908 . . . . 5 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
196, 18syl 14 . . . 4 (𝐾N → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
20 df-1r 7794 . . . . . 6 1R = [⟨(1P +P 1P), 1P⟩] ~R
2120oveq2i 5930 . . . . 5 ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
22 addclpr 7599 . . . . . . . 8 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
234, 4, 22mp2an 426 . . . . . . 7 (1P +P 1P) ∈ P
24 addsrpr 7807 . . . . . . . 8 ((((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
254, 24mpanl2 435 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2623, 4, 25mpanr12 439 . . . . . 6 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
276, 26syl 14 . . . . 5 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2821, 27eqtrid 2238 . . . 4 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
29 addpinq1 7526 . . . . . . . . . . 11 (𝐾N → [⟨(𝐾 +N 1o), 1o⟩] ~Q = ([⟨𝐾, 1o⟩] ~Q +Q 1Q))
3029breq2d 4042 . . . . . . . . . 10 (𝐾N → (𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)))
3130abbidv 2311 . . . . . . . . 9 (𝐾N → {𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q } = {𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)})
3229breq1d 4040 . . . . . . . . . 10 (𝐾N → ([⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢 ↔ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢))
3332abbidv 2311 . . . . . . . . 9 (𝐾N → {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢})
3431, 33opeq12d 3813 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩)
35 nnnq 7484 . . . . . . . . 9 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
36 addnqpr1 7624 . . . . . . . . 9 ([⟨𝐾, 1o⟩] ~QQ → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3735, 36syl 14 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3834, 37eqtrd 2226 . . . . . . 7 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3938oveq1d 5934 . . . . . 6 (𝐾N → (⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P))
4039opeq1d 3811 . . . . 5 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩)
4140eceq1d 6625 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
4219, 28, 413eqtr4d 2236 . . 3 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
4342opeq1d 3811 . 2 (𝐾N → ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
4417, 43eqtrd 2226 1 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  cop 3622   class class class wbr 4030   × cxp 4658  (class class class)co 5919  1oc1o 6464  [cec 6587   / cqs 6588  Ncnpi 7334   +N cpli 7335   ~Q ceq 7341  Qcnq 7342  1Qc1q 7343   +Q cplq 7344   <Q cltq 7347  Pcnp 7353  1Pc1p 7354   +P cpp 7355   ~R cer 7358  Rcnr 7359  0Rc0r 7360  1Rc1r 7361   +R cplr 7363  1c1 7875   + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-enr 7788  df-nr 7789  df-plr 7790  df-0r 7793  df-1r 7794  df-c 7880  df-1 7882  df-add 7885
This theorem is referenced by:  pitonn  7910  nntopi  7956
  Copyright terms: Public domain W3C validator