Step | Hyp | Ref
| Expression |
1 | | df-1 7819 |
. . . 4
⊢ 1 =
⟨1R,
0R⟩ |
2 | 1 | oveq2i 5886 |
. . 3
⊢
(⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R , 0R⟩ + 1) =
(⟨[⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R , 0R⟩ +
⟨1R,
0R⟩) |
3 | | nnprlu 7552 |
. . . . . . . 8
⊢ (𝐾 ∈ N →
⟨{𝑙 ∣ 𝑙 <Q
[⟨𝐾,
1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ ∈
P) |
4 | | 1pr 7553 |
. . . . . . . 8
⊢
1P ∈ P |
5 | | addclpr 7536 |
. . . . . . . 8
⊢
((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ ∈ P ∧
1P ∈ P) → (⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) ∈ P) |
6 | 3, 4, 5 | sylancl 413 |
. . . . . . 7
⊢ (𝐾 ∈ N →
(⟨{𝑙 ∣ 𝑙 <Q
[⟨𝐾,
1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) ∈ P) |
7 | | opelxpi 4659 |
. . . . . . 7
⊢
(((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) ∈ P ∧
1P ∈ P) → ⟨(⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩ ∈
(P × P)) |
8 | 6, 4, 7 | sylancl 413 |
. . . . . 6
⊢ (𝐾 ∈ N →
⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩ ∈
(P × P)) |
9 | | enrex 7736 |
. . . . . . 7
⊢
~R ∈ V |
10 | 9 | ecelqsi 6589 |
. . . . . 6
⊢
(⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩ ∈
(P × P) → [⟨(⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R ∈ ((P × P)
/ ~R )) |
11 | 8, 10 | syl 14 |
. . . . 5
⊢ (𝐾 ∈ N →
[⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R ∈ ((P × P)
/ ~R )) |
12 | | df-nr 7726 |
. . . . 5
⊢
R = ((P × P) /
~R ) |
13 | 11, 12 | eleqtrrdi 2271 |
. . . 4
⊢ (𝐾 ∈ N →
[⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R ∈ R) |
14 | | 1sr 7750 |
. . . 4
⊢
1R ∈ R |
15 | | addresr 7836 |
. . . 4
⊢
(([⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R ∈ R ∧
1R ∈ R) →
(⟨[⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R , 0R⟩ +
⟨1R, 0R⟩) =
⟨([⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
1R),
0R⟩) |
16 | 13, 14, 15 | sylancl 413 |
. . 3
⊢ (𝐾 ∈ N →
(⟨[⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R , 0R⟩ +
⟨1R, 0R⟩) =
⟨([⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
1R),
0R⟩) |
17 | 2, 16 | eqtrid 2222 |
. 2
⊢ (𝐾 ∈ N →
(⟨[⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R , 0R⟩ + 1) =
⟨([⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
1R),
0R⟩) |
18 | | pitonnlem1p1 7845 |
. . . . 5
⊢
((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) ∈ P →
[⟨((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
(1P +P
1P)), (1P
+P 1P)⟩]
~R = [⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
1P), 1P⟩]
~R ) |
19 | 6, 18 | syl 14 |
. . . 4
⊢ (𝐾 ∈ N →
[⟨((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
(1P +P
1P)), (1P
+P 1P)⟩]
~R = [⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
1P), 1P⟩]
~R ) |
20 | | df-1r 7731 |
. . . . . 6
⊢
1R = [⟨(1P
+P 1P),
1P⟩] ~R |
21 | 20 | oveq2i 5886 |
. . . . 5
⊢
([⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
1R) = ([⟨(⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
[⟨(1P +P
1P), 1P⟩]
~R ) |
22 | | addclpr 7536 |
. . . . . . . 8
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
23 | 4, 4, 22 | mp2an 426 |
. . . . . . 7
⊢
(1P +P
1P) ∈ P |
24 | | addsrpr 7744 |
. . . . . . . 8
⊢
((((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) ∈ P ∧
1P ∈ P) ∧
((1P +P
1P) ∈ P ∧
1P ∈ P)) →
([⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
[⟨(1P +P
1P), 1P⟩]
~R ) = [⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
(1P +P
1P)), (1P
+P 1P)⟩]
~R ) |
25 | 4, 24 | mpanl2 435 |
. . . . . . 7
⊢
(((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) ∈ P ∧
((1P +P
1P) ∈ P ∧
1P ∈ P)) →
([⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
[⟨(1P +P
1P), 1P⟩]
~R ) = [⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
(1P +P
1P)), (1P
+P 1P)⟩]
~R ) |
26 | 23, 4, 25 | mpanr12 439 |
. . . . . 6
⊢
((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) ∈ P →
([⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
[⟨(1P +P
1P), 1P⟩]
~R ) = [⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
(1P +P
1P)), (1P
+P 1P)⟩]
~R ) |
27 | 6, 26 | syl 14 |
. . . . 5
⊢ (𝐾 ∈ N →
([⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
[⟨(1P +P
1P), 1P⟩]
~R ) = [⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
(1P +P
1P)), (1P
+P 1P)⟩]
~R ) |
28 | 21, 27 | eqtrid 2222 |
. . . 4
⊢ (𝐾 ∈ N →
([⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
1R) = [⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
(1P +P
1P)), (1P
+P 1P)⟩]
~R ) |
29 | | addpinq1 7463 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ N →
[⟨(𝐾
+N 1o), 1o⟩]
~Q = ([⟨𝐾, 1o⟩]
~Q +Q
1Q)) |
30 | 29 | breq2d 4016 |
. . . . . . . . . 10
⊢ (𝐾 ∈ N →
(𝑙
<Q [⟨(𝐾 +N 1o),
1o⟩] ~Q ↔ 𝑙 <Q ([⟨𝐾, 1o⟩]
~Q +Q
1Q))) |
31 | 30 | abbidv 2295 |
. . . . . . . . 9
⊢ (𝐾 ∈ N →
{𝑙 ∣ 𝑙 <Q
[⟨(𝐾
+N 1o), 1o⟩]
~Q } = {𝑙 ∣ 𝑙 <Q ([⟨𝐾, 1o⟩]
~Q +Q
1Q)}) |
32 | 29 | breq1d 4014 |
. . . . . . . . . 10
⊢ (𝐾 ∈ N →
([⟨(𝐾
+N 1o), 1o⟩]
~Q <Q 𝑢 ↔ ([⟨𝐾, 1o⟩]
~Q +Q
1Q) <Q 𝑢)) |
33 | 32 | abbidv 2295 |
. . . . . . . . 9
⊢ (𝐾 ∈ N →
{𝑢 ∣ [⟨(𝐾 +N
1o), 1o⟩] ~Q
<Q 𝑢} = {𝑢 ∣ ([⟨𝐾, 1o⟩]
~Q +Q
1Q) <Q 𝑢}) |
34 | 31, 33 | opeq12d 3787 |
. . . . . . . 8
⊢ (𝐾 ∈ N →
⟨{𝑙 ∣ 𝑙 <Q
[⟨(𝐾
+N 1o), 1o⟩]
~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o),
1o⟩] ~Q <Q
𝑢}⟩ = ⟨{𝑙 ∣ 𝑙 <Q ([⟨𝐾, 1o⟩]
~Q +Q
1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩]
~Q +Q
1Q) <Q 𝑢}⟩) |
35 | | nnnq 7421 |
. . . . . . . . 9
⊢ (𝐾 ∈ N →
[⟨𝐾,
1o⟩] ~Q ∈
Q) |
36 | | addnqpr1 7561 |
. . . . . . . . 9
⊢
([⟨𝐾,
1o⟩] ~Q ∈ Q →
⟨{𝑙 ∣ 𝑙 <Q
([⟨𝐾,
1o⟩] ~Q +Q
1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩]
~Q +Q
1Q) <Q 𝑢}⟩ = (⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P)) |
37 | 35, 36 | syl 14 |
. . . . . . . 8
⊢ (𝐾 ∈ N →
⟨{𝑙 ∣ 𝑙 <Q
([⟨𝐾,
1o⟩] ~Q +Q
1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩]
~Q +Q
1Q) <Q 𝑢}⟩ = (⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P)) |
38 | 34, 37 | eqtrd 2210 |
. . . . . . 7
⊢ (𝐾 ∈ N →
⟨{𝑙 ∣ 𝑙 <Q
[⟨(𝐾
+N 1o), 1o⟩]
~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o),
1o⟩] ~Q <Q
𝑢}⟩ = (⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P)) |
39 | 38 | oveq1d 5890 |
. . . . . 6
⊢ (𝐾 ∈ N →
(⟨{𝑙 ∣ 𝑙 <Q
[⟨(𝐾
+N 1o), 1o⟩]
~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o),
1o⟩] ~Q <Q
𝑢}⟩
+P 1P) = ((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
1P)) |
40 | 39 | opeq1d 3785 |
. . . . 5
⊢ (𝐾 ∈ N →
⟨(⟨{𝑙 ∣
𝑙
<Q [⟨(𝐾 +N 1o),
1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o),
1o⟩] ~Q <Q
𝑢}⟩
+P 1P),
1P⟩ = ⟨((⟨{𝑙 ∣ 𝑙 <Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
1P),
1P⟩) |
41 | 40 | eceq1d 6571 |
. . . 4
⊢ (𝐾 ∈ N →
[⟨(⟨{𝑙 ∣
𝑙
<Q [⟨(𝐾 +N 1o),
1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o),
1o⟩] ~Q <Q
𝑢}⟩
+P 1P),
1P⟩] ~R =
[⟨((⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P) +P
1P), 1P⟩]
~R ) |
42 | 19, 28, 41 | 3eqtr4d 2220 |
. . 3
⊢ (𝐾 ∈ N →
([⟨(⟨{𝑙 ∣
𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
1R) = [⟨(⟨{𝑙 ∣ 𝑙 <Q [⟨(𝐾 +N
1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N
1o), 1o⟩] ~Q
<Q 𝑢}⟩ +P
1P), 1P⟩]
~R ) |
43 | 42 | opeq1d 3785 |
. 2
⊢ (𝐾 ∈ N →
⟨([⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R +R
1R), 0R⟩ =
⟨[⟨(⟨{𝑙
∣ 𝑙
<Q [⟨(𝐾 +N 1o),
1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o),
1o⟩] ~Q <Q
𝑢}⟩
+P 1P),
1P⟩] ~R ,
0R⟩) |
44 | 17, 43 | eqtrd 2210 |
1
⊢ (𝐾 ∈ N →
(⟨[⟨(⟨{𝑙
∣ 𝑙
<Q [⟨𝐾, 1o⟩]
~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩]
~Q <Q 𝑢}⟩ +P
1P), 1P⟩]
~R , 0R⟩ + 1) =
⟨[⟨(⟨{𝑙
∣ 𝑙
<Q [⟨(𝐾 +N 1o),
1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o),
1o⟩] ~Q <Q
𝑢}⟩
+P 1P),
1P⟩] ~R ,
0R⟩) |