ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem2 GIF version

Theorem pitonnlem2 7846
Description: Lemma for pitonn 7847. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Distinct variable group:   𝐾,𝑙,𝑢

Proof of Theorem pitonnlem2
StepHypRef Expression
1 df-1 7819 . . . 4 1 = ⟨1R, 0R
21oveq2i 5886 . . 3 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩)
3 nnprlu 7552 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
4 1pr 7553 . . . . . . . 8 1PP
5 addclpr 7536 . . . . . . . 8 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
63, 4, 5sylancl 413 . . . . . . 7 (𝐾N → (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
7 opelxpi 4659 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
86, 4, 7sylancl 413 . . . . . 6 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
9 enrex 7736 . . . . . . 7 ~R ∈ V
109ecelqsi 6589 . . . . . 6 (⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
118, 10syl 14 . . . . 5 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
12 df-nr 7726 . . . . 5 R = ((P × P) / ~R )
1311, 12eleqtrrdi 2271 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
14 1sr 7750 . . . 4 1RR
15 addresr 7836 . . . 4 (([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR ∧ 1RR) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
1613, 14, 15sylancl 413 . . 3 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + ⟨1R, 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
172, 16eqtrid 2222 . 2 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩)
18 pitonnlem1p1 7845 . . . . 5 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
196, 18syl 14 . . . 4 (𝐾N → [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
20 df-1r 7731 . . . . . 6 1R = [⟨(1P +P 1P), 1P⟩] ~R
2120oveq2i 5886 . . . . 5 ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
22 addclpr 7536 . . . . . . . 8 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
234, 4, 22mp2an 426 . . . . . . 7 (1P +P 1P) ∈ P
24 addsrpr 7744 . . . . . . . 8 ((((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
254, 24mpanl2 435 . . . . . . 7 (((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2623, 4, 25mpanr12 439 . . . . . 6 ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
276, 26syl 14 . . . . 5 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
2821, 27eqtrid 2222 . . . 4 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P (1P +P 1P)), (1P +P 1P)⟩] ~R )
29 addpinq1 7463 . . . . . . . . . . 11 (𝐾N → [⟨(𝐾 +N 1o), 1o⟩] ~Q = ([⟨𝐾, 1o⟩] ~Q +Q 1Q))
3029breq2d 4016 . . . . . . . . . 10 (𝐾N → (𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)))
3130abbidv 2295 . . . . . . . . 9 (𝐾N → {𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q } = {𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)})
3229breq1d 4014 . . . . . . . . . 10 (𝐾N → ([⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢 ↔ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢))
3332abbidv 2295 . . . . . . . . 9 (𝐾N → {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢})
3431, 33opeq12d 3787 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩)
35 nnnq 7421 . . . . . . . . 9 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
36 addnqpr1 7561 . . . . . . . . 9 ([⟨𝐾, 1o⟩] ~QQ → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3735, 36syl 14 . . . . . . . 8 (𝐾N → ⟨{𝑙𝑙 <Q ([⟨𝐾, 1o⟩] ~Q +Q 1Q)}, {𝑢 ∣ ([⟨𝐾, 1o⟩] ~Q +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3834, 37eqtrd 2210 . . . . . . 7 (𝐾N → ⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
3938oveq1d 5890 . . . . . 6 (𝐾N → (⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = ((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P))
4039opeq1d 3785 . . . . 5 (𝐾N → ⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩)
4140eceq1d 6571 . . . 4 (𝐾N → [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨((⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 1P), 1P⟩] ~R )
4219, 28, 413eqtr4d 2220 . . 3 (𝐾N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R) = [⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
4342opeq1d 3785 . 2 (𝐾N → ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R +R 1R), 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
4417, 43eqtrd 2210 1 (𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {cab 2163  cop 3596   class class class wbr 4004   × cxp 4625  (class class class)co 5875  1oc1o 6410  [cec 6533   / cqs 6534  Ncnpi 7271   +N cpli 7272   ~Q ceq 7278  Qcnq 7279  1Qc1q 7280   +Q cplq 7281   <Q cltq 7284  Pcnp 7290  1Pc1p 7291   +P cpp 7292   ~R cer 7295  Rcnr 7296  0Rc0r 7297  1Rc1r 7298   +R cplr 7300  1c1 7812   + caddc 7814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-enr 7725  df-nr 7726  df-plr 7727  df-0r 7730  df-1r 7731  df-c 7817  df-1 7819  df-add 7822
This theorem is referenced by:  pitonn  7847  nntopi  7893
  Copyright terms: Public domain W3C validator