ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexaplem2 GIF version

Theorem recexaplem2 8612
Description: Lemma for recexap 8613. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexaplem2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)

Proof of Theorem recexaplem2
StepHypRef Expression
1 ax-icn 7909 . . . . . . . . . . 11 i ∈ ℂ
21mul01i 8351 . . . . . . . . . 10 (i · 0) = 0
32oveq2i 5889 . . . . . . . . 9 (0 + (i · 0)) = (0 + 0)
4 00id 8101 . . . . . . . . 9 (0 + 0) = 0
53, 4eqtr2i 2199 . . . . . . . 8 0 = (0 + (i · 0))
65breq2i 4013 . . . . . . 7 ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 + (i · 𝐵)) # (0 + (i · 0)))
7 0re 7960 . . . . . . . 8 0 ∈ ℝ
8 apreim 8563 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
97, 7, 8mpanr12 439 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
106, 9bitrid 192 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
1110pm5.32i 454 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0)))
12 remulcl 7942 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
1312anidms 397 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
14 remulcl 7942 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ)
1514anidms 397 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ)
1613, 15anim12i 338 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
1716adantr 276 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
18 apsqgt0 8561 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
19 msqge0 8576 . . . . . . . . 9 (𝐵 ∈ ℝ → 0 ≤ (𝐵 · 𝐵))
2018, 19anim12i 338 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
2120an32s 568 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
22 addgtge0 8410 . . . . . . 7 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2317, 21, 22syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2416adantr 276 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
25 msqge0 8576 . . . . . . . . 9 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
26 apsqgt0 8561 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → 0 < (𝐵 · 𝐵))
2725, 26anim12i 338 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
2827anassrs 400 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
29 addgegt0 8409 . . . . . . 7 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3024, 28, 29syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3123, 30jaodan 797 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3211, 31sylbi 121 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
33323impa 1194 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3433olcd 734 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))))
35 simp1 997 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐴 ∈ ℝ)
3635, 35remulcld 7991 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐴 · 𝐴) ∈ ℝ)
37 simp2 998 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐵 ∈ ℝ)
3837, 37remulcld 7991 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐵 · 𝐵) ∈ ℝ)
3936, 38readdcld 7990 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ)
40 reaplt 8548 . . 3 ((((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))))
4139, 7, 40sylancl 413 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))))
4234, 41mpbird 167 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978  wcel 2148   class class class wbr 4005  (class class class)co 5878  cr 7813  0cc0 7814  ici 7816   + caddc 7817   · cmul 7819   < clt 7995  cle 7996   # cap 8541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542
This theorem is referenced by:  recexap  8613
  Copyright terms: Public domain W3C validator