ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexaplem2 GIF version

Theorem recexaplem2 8437
Description: Lemma for recexap 8438. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexaplem2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)

Proof of Theorem recexaplem2
StepHypRef Expression
1 ax-icn 7739 . . . . . . . . . . 11 i ∈ ℂ
21mul01i 8177 . . . . . . . . . 10 (i · 0) = 0
32oveq2i 5793 . . . . . . . . 9 (0 + (i · 0)) = (0 + 0)
4 00id 7927 . . . . . . . . 9 (0 + 0) = 0
53, 4eqtr2i 2162 . . . . . . . 8 0 = (0 + (i · 0))
65breq2i 3945 . . . . . . 7 ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 + (i · 𝐵)) # (0 + (i · 0)))
7 0re 7790 . . . . . . . 8 0 ∈ ℝ
8 apreim 8389 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
97, 7, 8mpanr12 436 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
106, 9syl5bb 191 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
1110pm5.32i 450 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0)))
12 remulcl 7772 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
1312anidms 395 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
14 remulcl 7772 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ)
1514anidms 395 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ)
1613, 15anim12i 336 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
1716adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
18 apsqgt0 8387 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
19 msqge0 8402 . . . . . . . . 9 (𝐵 ∈ ℝ → 0 ≤ (𝐵 · 𝐵))
2018, 19anim12i 336 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
2120an32s 558 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
22 addgtge0 8236 . . . . . . 7 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2317, 21, 22syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2416adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
25 msqge0 8402 . . . . . . . . 9 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
26 apsqgt0 8387 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → 0 < (𝐵 · 𝐵))
2725, 26anim12i 336 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
2827anassrs 398 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
29 addgegt0 8235 . . . . . . 7 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3024, 28, 29syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3123, 30jaodan 787 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3211, 31sylbi 120 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
33323impa 1177 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3433olcd 724 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))))
35 simp1 982 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐴 ∈ ℝ)
3635, 35remulcld 7820 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐴 · 𝐴) ∈ ℝ)
37 simp2 983 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐵 ∈ ℝ)
3837, 37remulcld 7820 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐵 · 𝐵) ∈ ℝ)
3936, 38readdcld 7819 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ)
40 reaplt 8374 . . 3 ((((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))))
4139, 7, 40sylancl 410 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))))
4234, 41mpbird 166 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644  ici 7646   + caddc 7647   · cmul 7649   < clt 7824  cle 7825   # cap 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368
This theorem is referenced by:  recexap  8438
  Copyright terms: Public domain W3C validator