Proof of Theorem recexaplem2
Step | Hyp | Ref
| Expression |
1 | | ax-icn 7869 |
. . . . . . . . . . 11
⊢ i ∈
ℂ |
2 | 1 | mul01i 8310 |
. . . . . . . . . 10
⊢ (i
· 0) = 0 |
3 | 2 | oveq2i 5864 |
. . . . . . . . 9
⊢ (0 + (i
· 0)) = (0 + 0) |
4 | | 00id 8060 |
. . . . . . . . 9
⊢ (0 + 0) =
0 |
5 | 3, 4 | eqtr2i 2192 |
. . . . . . . 8
⊢ 0 = (0 +
(i · 0)) |
6 | 5 | breq2i 3997 |
. . . . . . 7
⊢ ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 + (i · 𝐵)) # (0 + (i · 0))) |
7 | | 0re 7920 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
8 | | apreim 8522 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ∈
ℝ ∧ 0 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0))) |
9 | 7, 7, 8 | mpanr12 437 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0))) |
10 | 6, 9 | syl5bb 191 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 # 0 ∨ 𝐵 # 0))) |
11 | 10 | pm5.32i 451 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0))) |
12 | | remulcl 7902 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ) |
13 | 12 | anidms 395 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ) |
14 | | remulcl 7902 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ) |
15 | 14 | anidms 395 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ) |
16 | 13, 15 | anim12i 336 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ)) |
17 | 16 | adantr 274 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ)) |
18 | | apsqgt0 8520 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) |
19 | | msqge0 8535 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 0 ≤
(𝐵 · 𝐵)) |
20 | 18, 19 | anim12i 336 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) |
21 | 20 | an32s 563 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) |
22 | | addgtge0 8369 |
. . . . . . 7
⊢ ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
23 | 17, 21, 22 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
24 | 16 | adantr 274 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ)) |
25 | | msqge0 8535 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 0 ≤
(𝐴 · 𝐴)) |
26 | | apsqgt0 8520 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → 0 < (𝐵 · 𝐵)) |
27 | 25, 26 | anim12i 336 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) |
28 | 27 | anassrs 398 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) |
29 | | addgegt0 8368 |
. . . . . . 7
⊢ ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
30 | 24, 28, 29 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
31 | 23, 30 | jaodan 792 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
32 | 11, 31 | sylbi 120 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
33 | 32 | 3impa 1189 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
34 | 33 | olcd 729 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))) |
35 | | simp1 992 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐴 ∈ ℝ) |
36 | 35, 35 | remulcld 7950 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐴 · 𝐴) ∈ ℝ) |
37 | | simp2 993 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐵 ∈ ℝ) |
38 | 37, 37 | remulcld 7950 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐵 · 𝐵) ∈ ℝ) |
39 | 36, 38 | readdcld 7949 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ) |
40 | | reaplt 8507 |
. . 3
⊢ ((((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))))) |
41 | 39, 7, 40 | sylancl 411 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))))) |
42 | 34, 41 | mpbird 166 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0) |