ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexaplem2 GIF version

Theorem recexaplem2 8679
Description: Lemma for recexap 8680. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexaplem2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)

Proof of Theorem recexaplem2
StepHypRef Expression
1 ax-icn 7974 . . . . . . . . . . 11 i ∈ ℂ
21mul01i 8417 . . . . . . . . . 10 (i · 0) = 0
32oveq2i 5933 . . . . . . . . 9 (0 + (i · 0)) = (0 + 0)
4 00id 8167 . . . . . . . . 9 (0 + 0) = 0
53, 4eqtr2i 2218 . . . . . . . 8 0 = (0 + (i · 0))
65breq2i 4041 . . . . . . 7 ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 + (i · 𝐵)) # (0 + (i · 0)))
7 0re 8026 . . . . . . . 8 0 ∈ ℝ
8 apreim 8630 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
97, 7, 8mpanr12 439 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # (0 + (i · 0)) ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
106, 9bitrid 192 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) # 0 ↔ (𝐴 # 0 ∨ 𝐵 # 0)))
1110pm5.32i 454 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0)))
12 remulcl 8007 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
1312anidms 397 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
14 remulcl 8007 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ)
1514anidms 397 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ)
1613, 15anim12i 338 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
1716adantr 276 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
18 apsqgt0 8628 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
19 msqge0 8643 . . . . . . . . 9 (𝐵 ∈ ℝ → 0 ≤ (𝐵 · 𝐵))
2018, 19anim12i 338 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
2120an32s 568 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
22 addgtge0 8477 . . . . . . 7 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2317, 21, 22syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2416adantr 276 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
25 msqge0 8643 . . . . . . . . 9 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
26 apsqgt0 8628 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → 0 < (𝐵 · 𝐵))
2725, 26anim12i 338 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 # 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
2827anassrs 400 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
29 addgegt0 8476 . . . . . . 7 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3024, 28, 29syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3123, 30jaodan 798 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 # 0 ∨ 𝐵 # 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3211, 31sylbi 121 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
33323impa 1196 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3433olcd 735 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))))
35 simp1 999 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐴 ∈ ℝ)
3635, 35remulcld 8057 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐴 · 𝐴) ∈ ℝ)
37 simp2 1000 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → 𝐵 ∈ ℝ)
3837, 37remulcld 8057 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (𝐵 · 𝐵) ∈ ℝ)
3936, 38readdcld 8056 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ)
40 reaplt 8615 . . 3 ((((𝐴 · 𝐴) + (𝐵 · 𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))))
4139, 7, 40sylancl 413 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → (((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0 ↔ (((𝐴 · 𝐴) + (𝐵 · 𝐵)) < 0 ∨ 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))))
4234, 41mpbird 167 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879  ici 7881   + caddc 7882   · cmul 7884   < clt 8061  cle 8062   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  recexap  8680
  Copyright terms: Public domain W3C validator