ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 GIF version

Theorem nq0a0 7517
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)

Proof of Theorem nq0a0
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7502 . 2 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2 df-0nq0 7486 . . . . . 6 0Q0 = [⟨∅, 1o⟩] ~Q0
3 oveq12 5927 . . . . . 6 ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ 0Q0 = [⟨∅, 1o⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ))
42, 3mpan2 425 . . . . 5 (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 → (𝐴 +Q0 0Q0) = ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ))
5 peano1 4626 . . . . . 6 ∅ ∈ ω
6 1pi 7375 . . . . . 6 1oN
7 addnnnq0 7509 . . . . . 6 (((𝑤 ∈ ω ∧ 𝑣N) ∧ (∅ ∈ ω ∧ 1oN)) → ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
85, 6, 7mpanr12 439 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
94, 8sylan9eqr 2248 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
10 pinn 7369 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
11 nnm0 6528 . . . . . . . . . . 11 (𝑣 ∈ ω → (𝑣 ·o ∅) = ∅)
1211oveq2d 5934 . . . . . . . . . 10 (𝑣 ∈ ω → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = ((𝑤 ·o 1o) +o ∅))
1310, 12syl 14 . . . . . . . . 9 (𝑣N → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = ((𝑤 ·o 1o) +o ∅))
14 nnm1 6578 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝑤 ·o 1o) = 𝑤)
1514oveq1d 5933 . . . . . . . . . 10 (𝑤 ∈ ω → ((𝑤 ·o 1o) +o ∅) = (𝑤 +o ∅))
16 nna0 6527 . . . . . . . . . 10 (𝑤 ∈ ω → (𝑤 +o ∅) = 𝑤)
1715, 16eqtrd 2226 . . . . . . . . 9 (𝑤 ∈ ω → ((𝑤 ·o 1o) +o ∅) = 𝑤)
1813, 17sylan9eqr 2248 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = 𝑤)
19 nnm1 6578 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑣 ·o 1o) = 𝑣)
2010, 19syl 14 . . . . . . . . 9 (𝑣N → (𝑣 ·o 1o) = 𝑣)
2120adantl 277 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → (𝑣 ·o 1o) = 𝑣)
2218, 21opeq12d 3812 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩ = ⟨𝑤, 𝑣⟩)
2322eceq1d 6623 . . . . . 6 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
2423eqeq2d 2205 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → (𝐴 = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2524biimpar 297 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → 𝐴 = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
269, 25eqtr4d 2229 . . 3 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = 𝐴)
2726exlimivv 1908 . 2 (∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = 𝐴)
281, 27syl 14 1 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  c0 3446  cop 3621  ωcom 4622  (class class class)co 5918  1oc1o 6462   +o coa 6466   ·o comu 6467  [cec 6585  Ncnpi 7332   ~Q0 ceq0 7346  Q0cnq0 7347  0Q0c0q0 7348   +Q0 cplq0 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487
This theorem is referenced by:  prarloclem5  7560
  Copyright terms: Public domain W3C validator