ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 GIF version

Theorem nq0a0 7487
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)

Proof of Theorem nq0a0
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7472 . 2 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2 df-0nq0 7456 . . . . . 6 0Q0 = [⟨∅, 1o⟩] ~Q0
3 oveq12 5906 . . . . . 6 ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ 0Q0 = [⟨∅, 1o⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ))
42, 3mpan2 425 . . . . 5 (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 → (𝐴 +Q0 0Q0) = ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ))
5 peano1 4611 . . . . . 6 ∅ ∈ ω
6 1pi 7345 . . . . . 6 1oN
7 addnnnq0 7479 . . . . . 6 (((𝑤 ∈ ω ∧ 𝑣N) ∧ (∅ ∈ ω ∧ 1oN)) → ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
85, 6, 7mpanr12 439 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
94, 8sylan9eqr 2244 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
10 pinn 7339 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
11 nnm0 6501 . . . . . . . . . . 11 (𝑣 ∈ ω → (𝑣 ·o ∅) = ∅)
1211oveq2d 5913 . . . . . . . . . 10 (𝑣 ∈ ω → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = ((𝑤 ·o 1o) +o ∅))
1310, 12syl 14 . . . . . . . . 9 (𝑣N → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = ((𝑤 ·o 1o) +o ∅))
14 nnm1 6551 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝑤 ·o 1o) = 𝑤)
1514oveq1d 5912 . . . . . . . . . 10 (𝑤 ∈ ω → ((𝑤 ·o 1o) +o ∅) = (𝑤 +o ∅))
16 nna0 6500 . . . . . . . . . 10 (𝑤 ∈ ω → (𝑤 +o ∅) = 𝑤)
1715, 16eqtrd 2222 . . . . . . . . 9 (𝑤 ∈ ω → ((𝑤 ·o 1o) +o ∅) = 𝑤)
1813, 17sylan9eqr 2244 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = 𝑤)
19 nnm1 6551 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑣 ·o 1o) = 𝑣)
2010, 19syl 14 . . . . . . . . 9 (𝑣N → (𝑣 ·o 1o) = 𝑣)
2120adantl 277 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → (𝑣 ·o 1o) = 𝑣)
2218, 21opeq12d 3801 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩ = ⟨𝑤, 𝑣⟩)
2322eceq1d 6596 . . . . . 6 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
2423eqeq2d 2201 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → (𝐴 = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2524biimpar 297 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → 𝐴 = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
269, 25eqtr4d 2225 . . 3 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = 𝐴)
2726exlimivv 1908 . 2 (∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = 𝐴)
281, 27syl 14 1 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2160  c0 3437  cop 3610  ωcom 4607  (class class class)co 5897  1oc1o 6435   +o coa 6439   ·o comu 6440  [cec 6558  Ncnpi 7302   ~Q0 ceq0 7316  Q0cnq0 7317  0Q0c0q0 7318   +Q0 cplq0 7319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-mi 7336  df-enq0 7454  df-nq0 7455  df-0nq0 7456  df-plq0 7457
This theorem is referenced by:  prarloclem5  7530
  Copyright terms: Public domain W3C validator