ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 GIF version

Theorem nq0a0 7612
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)

Proof of Theorem nq0a0
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7597 . 2 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2 df-0nq0 7581 . . . . . 6 0Q0 = [⟨∅, 1o⟩] ~Q0
3 oveq12 5983 . . . . . 6 ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ 0Q0 = [⟨∅, 1o⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ))
42, 3mpan2 425 . . . . 5 (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 → (𝐴 +Q0 0Q0) = ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ))
5 peano1 4663 . . . . . 6 ∅ ∈ ω
6 1pi 7470 . . . . . 6 1oN
7 addnnnq0 7604 . . . . . 6 (((𝑤 ∈ ω ∧ 𝑣N) ∧ (∅ ∈ ω ∧ 1oN)) → ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
85, 6, 7mpanr12 439 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨𝑤, 𝑣⟩] ~Q0 +Q0 [⟨∅, 1o⟩] ~Q0 ) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
94, 8sylan9eqr 2264 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
10 pinn 7464 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
11 nnm0 6591 . . . . . . . . . . 11 (𝑣 ∈ ω → (𝑣 ·o ∅) = ∅)
1211oveq2d 5990 . . . . . . . . . 10 (𝑣 ∈ ω → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = ((𝑤 ·o 1o) +o ∅))
1310, 12syl 14 . . . . . . . . 9 (𝑣N → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = ((𝑤 ·o 1o) +o ∅))
14 nnm1 6641 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝑤 ·o 1o) = 𝑤)
1514oveq1d 5989 . . . . . . . . . 10 (𝑤 ∈ ω → ((𝑤 ·o 1o) +o ∅) = (𝑤 +o ∅))
16 nna0 6590 . . . . . . . . . 10 (𝑤 ∈ ω → (𝑤 +o ∅) = 𝑤)
1715, 16eqtrd 2242 . . . . . . . . 9 (𝑤 ∈ ω → ((𝑤 ·o 1o) +o ∅) = 𝑤)
1813, 17sylan9eqr 2264 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((𝑤 ·o 1o) +o (𝑣 ·o ∅)) = 𝑤)
19 nnm1 6641 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑣 ·o 1o) = 𝑣)
2010, 19syl 14 . . . . . . . . 9 (𝑣N → (𝑣 ·o 1o) = 𝑣)
2120adantl 277 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → (𝑣 ·o 1o) = 𝑣)
2218, 21opeq12d 3844 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩ = ⟨𝑤, 𝑣⟩)
2322eceq1d 6686 . . . . . 6 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
2423eqeq2d 2221 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → (𝐴 = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2524biimpar 297 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → 𝐴 = [⟨((𝑤 ·o 1o) +o (𝑣 ·o ∅)), (𝑣 ·o 1o)⟩] ~Q0 )
269, 25eqtr4d 2245 . . 3 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = 𝐴)
2726exlimivv 1923 . 2 (∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (𝐴 +Q0 0Q0) = 𝐴)
281, 27syl 14 1 (𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wex 1518  wcel 2180  c0 3471  cop 3649  ωcom 4659  (class class class)co 5974  1oc1o 6525   +o coa 6529   ·o comu 6530  [cec 6648  Ncnpi 7427   ~Q0 ceq0 7441  Q0cnq0 7442  0Q0c0q0 7443   +Q0 cplq0 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582
This theorem is referenced by:  prarloclem5  7655
  Copyright terms: Public domain W3C validator