ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulresr GIF version

Theorem mulresr 7868
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
mulresr ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)

Proof of Theorem mulresr
StepHypRef Expression
1 0r 7780 . . 3 0RR
2 mulcnsr 7865 . . . 4 (((𝐴R ∧ 0RR) ∧ (𝐵R ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
32an4s 588 . . 3 (((𝐴R𝐵R) ∧ (0RR ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
41, 1, 3mpanr12 439 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
5 00sr 7799 . . . . . . . 8 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . 7 (0R ·R 0R) = 0R
76oveq2i 5908 . . . . . 6 (-1R ·R (0R ·R 0R)) = (-1R ·R 0R)
8 m1r 7782 . . . . . . 7 -1RR
9 00sr 7799 . . . . . . 7 (-1RR → (-1R ·R 0R) = 0R)
108, 9ax-mp 5 . . . . . 6 (-1R ·R 0R) = 0R
117, 10eqtri 2210 . . . . 5 (-1R ·R (0R ·R 0R)) = 0R
1211oveq2i 5908 . . . 4 ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R)
13 mulclsr 7784 . . . . 5 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
14 0idsr 7797 . . . . 5 ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1513, 14syl 14 . . . 4 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1612, 15eqtrid 2234 . . 3 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵))
17 mulcomsrg 7787 . . . . . . 7 ((0RR𝐵R) → (0R ·R 𝐵) = (𝐵 ·R 0R))
181, 17mpan 424 . . . . . 6 (𝐵R → (0R ·R 𝐵) = (𝐵 ·R 0R))
19 00sr 7799 . . . . . 6 (𝐵R → (𝐵 ·R 0R) = 0R)
2018, 19eqtrd 2222 . . . . 5 (𝐵R → (0R ·R 𝐵) = 0R)
21 00sr 7799 . . . . 5 (𝐴R → (𝐴 ·R 0R) = 0R)
2220, 21oveqan12rd 5917 . . . 4 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R))
23 0idsr 7797 . . . . 5 (0RR → (0R +R 0R) = 0R)
241, 23ax-mp 5 . . . 4 (0R +R 0R) = 0R
2522, 24eqtrdi 2238 . . 3 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R)
2616, 25opeq12d 3801 . 2 ((𝐴R𝐵R) → ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩ = ⟨(𝐴 ·R 𝐵), 0R⟩)
274, 26eqtrd 2222 1 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  cop 3610  (class class class)co 5897  Rcnr 7327  0Rc0r 7328  -1Rcm1r 7330   +R cplr 7331   ·R cmr 7332   · cmul 7847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-2o 6443  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383  df-enq0 7454  df-nq0 7455  df-0nq0 7456  df-plq0 7457  df-mq0 7458  df-inp 7496  df-i1p 7497  df-iplp 7498  df-imp 7499  df-enr 7756  df-nr 7757  df-plr 7758  df-mr 7759  df-0r 7761  df-m1r 7763  df-c 7848  df-mul 7854
This theorem is referenced by:  recidpirq  7888  axmulrcl  7897  ax1rid  7907  axprecex  7910  axpre-mulgt0  7917  axpre-mulext  7918
  Copyright terms: Public domain W3C validator