| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulresr | GIF version | ||
| Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| mulresr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r 7876 | . . 3 ⊢ 0R ∈ R | |
| 2 | mulcnsr 7961 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R ∈ R) ∧ (𝐵 ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) | |
| 3 | 2 | an4s 588 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
| 4 | 1, 1, 3 | mpanr12 439 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
| 5 | 00sr 7895 | . . . . . . . 8 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
| 6 | 1, 5 | ax-mp 5 | . . . . . . 7 ⊢ (0R ·R 0R) = 0R |
| 7 | 6 | oveq2i 5965 | . . . . . 6 ⊢ (-1R ·R (0R ·R 0R)) = (-1R ·R 0R) |
| 8 | m1r 7878 | . . . . . . 7 ⊢ -1R ∈ R | |
| 9 | 00sr 7895 | . . . . . . 7 ⊢ (-1R ∈ R → (-1R ·R 0R) = 0R) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (-1R ·R 0R) = 0R |
| 11 | 7, 10 | eqtri 2227 | . . . . 5 ⊢ (-1R ·R (0R ·R 0R)) = 0R |
| 12 | 11 | oveq2i 5965 | . . . 4 ⊢ ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R) |
| 13 | mulclsr 7880 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | |
| 14 | 0idsr 7893 | . . . . 5 ⊢ ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) | |
| 15 | 13, 14 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) |
| 16 | 12, 15 | eqtrid 2251 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵)) |
| 17 | mulcomsrg 7883 | . . . . . . 7 ⊢ ((0R ∈ R ∧ 𝐵 ∈ R) → (0R ·R 𝐵) = (𝐵 ·R 0R)) | |
| 18 | 1, 17 | mpan 424 | . . . . . 6 ⊢ (𝐵 ∈ R → (0R ·R 𝐵) = (𝐵 ·R 0R)) |
| 19 | 00sr 7895 | . . . . . 6 ⊢ (𝐵 ∈ R → (𝐵 ·R 0R) = 0R) | |
| 20 | 18, 19 | eqtrd 2239 | . . . . 5 ⊢ (𝐵 ∈ R → (0R ·R 𝐵) = 0R) |
| 21 | 00sr 7895 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
| 22 | 20, 21 | oveqan12rd 5974 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R)) |
| 23 | 0idsr 7893 | . . . . 5 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
| 24 | 1, 23 | ax-mp 5 | . . . 4 ⊢ (0R +R 0R) = 0R |
| 25 | 22, 24 | eqtrdi 2255 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R) |
| 26 | 16, 25 | opeq12d 3830 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉 = 〈(𝐴 ·R 𝐵), 0R〉) |
| 27 | 4, 26 | eqtrd 2239 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3638 (class class class)co 5954 Rcnr 7423 0Rc0r 7424 -1Rcm1r 7426 +R cplr 7427 ·R cmr 7428 · cmul 7943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-2o 6513 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-enq0 7550 df-nq0 7551 df-0nq0 7552 df-plq0 7553 df-mq0 7554 df-inp 7592 df-i1p 7593 df-iplp 7594 df-imp 7595 df-enr 7852 df-nr 7853 df-plr 7854 df-mr 7855 df-0r 7857 df-m1r 7859 df-c 7944 df-mul 7950 |
| This theorem is referenced by: recidpirq 7984 axmulrcl 7993 ax1rid 8003 axprecex 8006 axpre-mulgt0 8013 axpre-mulext 8014 |
| Copyright terms: Public domain | W3C validator |