| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulresr | GIF version | ||
| Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| mulresr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r 7925 | . . 3 ⊢ 0R ∈ R | |
| 2 | mulcnsr 8010 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R ∈ R) ∧ (𝐵 ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) | |
| 3 | 2 | an4s 590 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
| 4 | 1, 1, 3 | mpanr12 439 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
| 5 | 00sr 7944 | . . . . . . . 8 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
| 6 | 1, 5 | ax-mp 5 | . . . . . . 7 ⊢ (0R ·R 0R) = 0R |
| 7 | 6 | oveq2i 6005 | . . . . . 6 ⊢ (-1R ·R (0R ·R 0R)) = (-1R ·R 0R) |
| 8 | m1r 7927 | . . . . . . 7 ⊢ -1R ∈ R | |
| 9 | 00sr 7944 | . . . . . . 7 ⊢ (-1R ∈ R → (-1R ·R 0R) = 0R) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (-1R ·R 0R) = 0R |
| 11 | 7, 10 | eqtri 2250 | . . . . 5 ⊢ (-1R ·R (0R ·R 0R)) = 0R |
| 12 | 11 | oveq2i 6005 | . . . 4 ⊢ ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R) |
| 13 | mulclsr 7929 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | |
| 14 | 0idsr 7942 | . . . . 5 ⊢ ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) | |
| 15 | 13, 14 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) |
| 16 | 12, 15 | eqtrid 2274 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵)) |
| 17 | mulcomsrg 7932 | . . . . . . 7 ⊢ ((0R ∈ R ∧ 𝐵 ∈ R) → (0R ·R 𝐵) = (𝐵 ·R 0R)) | |
| 18 | 1, 17 | mpan 424 | . . . . . 6 ⊢ (𝐵 ∈ R → (0R ·R 𝐵) = (𝐵 ·R 0R)) |
| 19 | 00sr 7944 | . . . . . 6 ⊢ (𝐵 ∈ R → (𝐵 ·R 0R) = 0R) | |
| 20 | 18, 19 | eqtrd 2262 | . . . . 5 ⊢ (𝐵 ∈ R → (0R ·R 𝐵) = 0R) |
| 21 | 00sr 7944 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
| 22 | 20, 21 | oveqan12rd 6014 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R)) |
| 23 | 0idsr 7942 | . . . . 5 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
| 24 | 1, 23 | ax-mp 5 | . . . 4 ⊢ (0R +R 0R) = 0R |
| 25 | 22, 24 | eqtrdi 2278 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R) |
| 26 | 16, 25 | opeq12d 3864 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉 = 〈(𝐴 ·R 𝐵), 0R〉) |
| 27 | 4, 26 | eqtrd 2262 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 (class class class)co 5994 Rcnr 7472 0Rc0r 7473 -1Rcm1r 7475 +R cplr 7476 ·R cmr 7477 · cmul 7992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-2o 6553 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-enq0 7599 df-nq0 7600 df-0nq0 7601 df-plq0 7602 df-mq0 7603 df-inp 7641 df-i1p 7642 df-iplp 7643 df-imp 7644 df-enr 7901 df-nr 7902 df-plr 7903 df-mr 7904 df-0r 7906 df-m1r 7908 df-c 7993 df-mul 7999 |
| This theorem is referenced by: recidpirq 8033 axmulrcl 8042 ax1rid 8052 axprecex 8055 axpre-mulgt0 8062 axpre-mulext 8063 |
| Copyright terms: Public domain | W3C validator |