Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosordlem GIF version

Theorem cosordlem 12978
 Description: Cosine is decreasing over the closed interval from 0 to π. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1 (𝜑𝐴 ∈ (0[,]π))
cosord.2 (𝜑𝐵 ∈ (0[,]π))
cosord.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
cosordlem (𝜑 → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7 (𝜑𝐵 ∈ (0[,]π))
2 0re 7790 . . . . . . . 8 0 ∈ ℝ
3 pire 12915 . . . . . . . 8 π ∈ ℝ
42, 3elicc2i 9752 . . . . . . 7 (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
51, 4sylib 121 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
65simp1d 994 . . . . 5 (𝜑𝐵 ∈ ℝ)
76recnd 7818 . . . 4 (𝜑𝐵 ∈ ℂ)
8 cosord.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,]π))
92, 3elicc2i 9752 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
108, 9sylib 121 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
1110simp1d 994 . . . . 5 (𝜑𝐴 ∈ ℝ)
1211recnd 7818 . . . 4 (𝜑𝐴 ∈ ℂ)
13 subcos 11490 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
147, 12, 13syl2anc 409 . . 3 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
15 2rp 9475 . . . 4 2 ∈ ℝ+
166, 11readdcld 7819 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ∈ ℝ)
1716rehalfcld 8990 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ ℝ)
1817resincld 11466 . . . . . 6 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ)
192a1i 9 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2010simp2d 995 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
21 cosord.3 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2219, 11, 6, 20, 21lelttrd 7911 . . . . . . . . . 10 (𝜑 → 0 < 𝐵)
236, 11, 22, 20addgtge0d 8306 . . . . . . . . 9 (𝜑 → 0 < (𝐵 + 𝐴))
24 2re 8814 . . . . . . . . . 10 2 ∈ ℝ
25 2pos 8835 . . . . . . . . . 10 0 < 2
26 divgt0 8654 . . . . . . . . . 10 ((((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵 + 𝐴) / 2))
2724, 25, 26mpanr12 436 . . . . . . . . 9 (((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) → 0 < ((𝐵 + 𝐴) / 2))
2816, 23, 27syl2anc 409 . . . . . . . 8 (𝜑 → 0 < ((𝐵 + 𝐴) / 2))
293a1i 9 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
3011, 6, 6, 21ltadd2dd 8208 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝐴) < (𝐵 + 𝐵))
3172timesd 8986 . . . . . . . . . . 11 (𝜑 → (2 · 𝐵) = (𝐵 + 𝐵))
3230, 31breqtrrd 3964 . . . . . . . . . 10 (𝜑 → (𝐵 + 𝐴) < (2 · 𝐵))
3324a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3425a1i 9 . . . . . . . . . . 11 (𝜑 → 0 < 2)
35 ltdivmul 8658 . . . . . . . . . . 11 (((𝐵 + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3616, 6, 33, 34, 35syl112anc 1221 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3732, 36mpbird 166 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝐴) / 2) < 𝐵)
385simp3d 996 . . . . . . . . 9 (𝜑𝐵 ≤ π)
3917, 6, 29, 37, 38ltletrd 8209 . . . . . . . 8 (𝜑 → ((𝐵 + 𝐴) / 2) < π)
40 0xr 7836 . . . . . . . . 9 0 ∈ ℝ*
413rexri 7847 . . . . . . . . 9 π ∈ ℝ*
42 elioo2 9734 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π)))
4340, 41, 42mp2an 423 . . . . . . . 8 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π))
4417, 28, 39, 43syl3anbrc 1166 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ (0(,)π))
45 sinq12gt0 12959 . . . . . . 7 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4644, 45syl 14 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4718, 46elrpd 9510 . . . . 5 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ+)
486, 11resubcld 8167 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4948rehalfcld 8990 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ ℝ)
5049resincld 11466 . . . . . 6 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
5111, 6posdifd 8318 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5221, 51mpbid 146 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
53 divgt0 8654 . . . . . . . . . 10 ((((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵𝐴) / 2))
5424, 25, 53mpanr12 436 . . . . . . . . 9 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → 0 < ((𝐵𝐴) / 2))
5548, 52, 54syl2anc 409 . . . . . . . 8 (𝜑 → 0 < ((𝐵𝐴) / 2))
56 rehalfcl 8971 . . . . . . . . . 10 (π ∈ ℝ → (π / 2) ∈ ℝ)
573, 56mp1i 10 . . . . . . . . 9 (𝜑 → (π / 2) ∈ ℝ)
586, 11subge02d 8323 . . . . . . . . . . . 12 (𝜑 → (0 ≤ 𝐴 ↔ (𝐵𝐴) ≤ 𝐵))
5920, 58mpbid 146 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ≤ 𝐵)
6048, 6, 29, 59, 38letrd 7910 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≤ π)
61 lediv1 8651 . . . . . . . . . . 11 (((𝐵𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6248, 29, 33, 34, 61syl112anc 1221 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6360, 62mpbid 146 . . . . . . . . 9 (𝜑 → ((𝐵𝐴) / 2) ≤ (π / 2))
64 pirp 12918 . . . . . . . . . 10 π ∈ ℝ+
65 rphalflt 9500 . . . . . . . . . 10 (π ∈ ℝ+ → (π / 2) < π)
6664, 65mp1i 10 . . . . . . . . 9 (𝜑 → (π / 2) < π)
6749, 57, 29, 63, 66lelttrd 7911 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 2) < π)
68 elioo2 9734 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π)))
6940, 41, 68mp2an 423 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π))
7049, 55, 67, 69syl3anbrc 1166 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ (0(,)π))
71 sinq12gt0 12959 . . . . . . 7 (((𝐵𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵𝐴) / 2)))
7270, 71syl 14 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵𝐴) / 2)))
7350, 72elrpd 9510 . . . . 5 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ+)
7447, 73rpmulcld 9530 . . . 4 (𝜑 → ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+)
75 rpmulcl 9495 . . . 4 ((2 ∈ ℝ+ ∧ ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+) → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7615, 74, 75sylancr 411 . . 3 (𝜑 → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7714, 76eqeltrd 2217 . 2 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+)
786recoscld 11467 . . 3 (𝜑 → (cos‘𝐵) ∈ ℝ)
7911recoscld 11467 . . 3 (𝜑 → (cos‘𝐴) ∈ ℝ)
80 difrp 9509 . . 3 (((cos‘𝐵) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8178, 79, 80syl2anc 409 . 2 (𝜑 → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8277, 81mpbird 166 1 (𝜑 → (cos‘𝐵) < (cos‘𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   class class class wbr 3937  ‘cfv 5131  (class class class)co 5782  ℂcc 7642  ℝcr 7643  0cc0 7644   + caddc 7647   · cmul 7649  ℝ*cxr 7823   < clt 7824   ≤ cle 7825   − cmin 7957   / cdiv 8456  2c2 8795  ℝ+crp 9470  (,)cioo 9701  [,]cicc 9704  sincsin 11387  cosccos 11388  πcpi 11390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394  df-pi 11396  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834 This theorem is referenced by:  cosq34lt1  12979  cos02pilt1  12980  cos0pilt1  12981  cos11  12982  ioocosf1o  12983
 Copyright terms: Public domain W3C validator