ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosordlem GIF version

Theorem cosordlem 13311
Description: Cosine is decreasing over the closed interval from 0 to π. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1 (𝜑𝐴 ∈ (0[,]π))
cosord.2 (𝜑𝐵 ∈ (0[,]π))
cosord.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
cosordlem (𝜑 → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7 (𝜑𝐵 ∈ (0[,]π))
2 0re 7890 . . . . . . . 8 0 ∈ ℝ
3 pire 13248 . . . . . . . 8 π ∈ ℝ
42, 3elicc2i 9866 . . . . . . 7 (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
51, 4sylib 121 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
65simp1d 998 . . . . 5 (𝜑𝐵 ∈ ℝ)
76recnd 7918 . . . 4 (𝜑𝐵 ∈ ℂ)
8 cosord.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,]π))
92, 3elicc2i 9866 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
108, 9sylib 121 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
1110simp1d 998 . . . . 5 (𝜑𝐴 ∈ ℝ)
1211recnd 7918 . . . 4 (𝜑𝐴 ∈ ℂ)
13 subcos 11674 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
147, 12, 13syl2anc 409 . . 3 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
15 2rp 9585 . . . 4 2 ∈ ℝ+
166, 11readdcld 7919 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ∈ ℝ)
1716rehalfcld 9094 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ ℝ)
1817resincld 11650 . . . . . 6 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ)
192a1i 9 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2010simp2d 999 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
21 cosord.3 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2219, 11, 6, 20, 21lelttrd 8014 . . . . . . . . . 10 (𝜑 → 0 < 𝐵)
236, 11, 22, 20addgtge0d 8409 . . . . . . . . 9 (𝜑 → 0 < (𝐵 + 𝐴))
24 2re 8918 . . . . . . . . . 10 2 ∈ ℝ
25 2pos 8939 . . . . . . . . . 10 0 < 2
26 divgt0 8758 . . . . . . . . . 10 ((((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵 + 𝐴) / 2))
2724, 25, 26mpanr12 436 . . . . . . . . 9 (((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) → 0 < ((𝐵 + 𝐴) / 2))
2816, 23, 27syl2anc 409 . . . . . . . 8 (𝜑 → 0 < ((𝐵 + 𝐴) / 2))
293a1i 9 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
3011, 6, 6, 21ltadd2dd 8311 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝐴) < (𝐵 + 𝐵))
3172timesd 9090 . . . . . . . . . . 11 (𝜑 → (2 · 𝐵) = (𝐵 + 𝐵))
3230, 31breqtrrd 4004 . . . . . . . . . 10 (𝜑 → (𝐵 + 𝐴) < (2 · 𝐵))
3324a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3425a1i 9 . . . . . . . . . . 11 (𝜑 → 0 < 2)
35 ltdivmul 8762 . . . . . . . . . . 11 (((𝐵 + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3616, 6, 33, 34, 35syl112anc 1231 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3732, 36mpbird 166 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝐴) / 2) < 𝐵)
385simp3d 1000 . . . . . . . . 9 (𝜑𝐵 ≤ π)
3917, 6, 29, 37, 38ltletrd 8312 . . . . . . . 8 (𝜑 → ((𝐵 + 𝐴) / 2) < π)
40 0xr 7936 . . . . . . . . 9 0 ∈ ℝ*
413rexri 7947 . . . . . . . . 9 π ∈ ℝ*
42 elioo2 9848 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π)))
4340, 41, 42mp2an 423 . . . . . . . 8 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π))
4417, 28, 39, 43syl3anbrc 1170 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ (0(,)π))
45 sinq12gt0 13292 . . . . . . 7 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4644, 45syl 14 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4718, 46elrpd 9620 . . . . 5 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ+)
486, 11resubcld 8270 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4948rehalfcld 9094 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ ℝ)
5049resincld 11650 . . . . . 6 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
5111, 6posdifd 8421 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5221, 51mpbid 146 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
53 divgt0 8758 . . . . . . . . . 10 ((((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵𝐴) / 2))
5424, 25, 53mpanr12 436 . . . . . . . . 9 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → 0 < ((𝐵𝐴) / 2))
5548, 52, 54syl2anc 409 . . . . . . . 8 (𝜑 → 0 < ((𝐵𝐴) / 2))
56 rehalfcl 9075 . . . . . . . . . 10 (π ∈ ℝ → (π / 2) ∈ ℝ)
573, 56mp1i 10 . . . . . . . . 9 (𝜑 → (π / 2) ∈ ℝ)
586, 11subge02d 8426 . . . . . . . . . . . 12 (𝜑 → (0 ≤ 𝐴 ↔ (𝐵𝐴) ≤ 𝐵))
5920, 58mpbid 146 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ≤ 𝐵)
6048, 6, 29, 59, 38letrd 8013 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≤ π)
61 lediv1 8755 . . . . . . . . . . 11 (((𝐵𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6248, 29, 33, 34, 61syl112anc 1231 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6360, 62mpbid 146 . . . . . . . . 9 (𝜑 → ((𝐵𝐴) / 2) ≤ (π / 2))
64 pirp 13251 . . . . . . . . . 10 π ∈ ℝ+
65 rphalflt 9610 . . . . . . . . . 10 (π ∈ ℝ+ → (π / 2) < π)
6664, 65mp1i 10 . . . . . . . . 9 (𝜑 → (π / 2) < π)
6749, 57, 29, 63, 66lelttrd 8014 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 2) < π)
68 elioo2 9848 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π)))
6940, 41, 68mp2an 423 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π))
7049, 55, 67, 69syl3anbrc 1170 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ (0(,)π))
71 sinq12gt0 13292 . . . . . . 7 (((𝐵𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵𝐴) / 2)))
7270, 71syl 14 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵𝐴) / 2)))
7350, 72elrpd 9620 . . . . 5 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ+)
7447, 73rpmulcld 9640 . . . 4 (𝜑 → ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+)
75 rpmulcl 9605 . . . 4 ((2 ∈ ℝ+ ∧ ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+) → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7615, 74, 75sylancr 411 . . 3 (𝜑 → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7714, 76eqeltrd 2241 . 2 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+)
786recoscld 11651 . . 3 (𝜑 → (cos‘𝐵) ∈ ℝ)
7911recoscld 11651 . . 3 (𝜑 → (cos‘𝐴) ∈ ℝ)
80 difrp 9619 . . 3 (((cos‘𝐵) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8178, 79, 80syl2anc 409 . 2 (𝜑 → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8277, 81mpbird 166 1 (𝜑 → (cos‘𝐵) < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135   class class class wbr 3976  cfv 5182  (class class class)co 5836  cc 7742  cr 7743  0cc0 7744   + caddc 7747   · cmul 7749  *cxr 7923   < clt 7924  cle 7925  cmin 8060   / cdiv 8559  2c2 8899  +crp 9580  (,)cioo 9815  [,]cicc 9818  sincsin 11571  cosccos 11572  πcpi 11574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864  ax-pre-suploc 7865  ax-addf 7866  ax-mulf 7867
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-disj 3954  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-of 6044  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-oadd 6379  df-er 6492  df-map 6607  df-pm 6608  df-en 6698  df-dom 6699  df-fin 6700  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-5 8910  df-6 8911  df-7 8912  df-8 8913  df-9 8914  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-xneg 9699  df-xadd 9700  df-ioo 9819  df-ioc 9820  df-ico 9821  df-icc 9822  df-fz 9936  df-fzo 10068  df-seqfrec 10371  df-exp 10445  df-fac 10628  df-bc 10650  df-ihash 10678  df-shft 10743  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-clim 11206  df-sumdc 11281  df-ef 11575  df-sin 11577  df-cos 11578  df-pi 11580  df-rest 12494  df-topgen 12513  df-psmet 12528  df-xmet 12529  df-met 12530  df-bl 12531  df-mopn 12532  df-top 12537  df-topon 12550  df-bases 12582  df-ntr 12637  df-cn 12729  df-cnp 12730  df-tx 12794  df-cncf 13099  df-limced 13166  df-dvap 13167
This theorem is referenced by:  cosq34lt1  13312  cos02pilt1  13313  cos0pilt1  13314  cos11  13315  ioocosf1o  13316
  Copyright terms: Public domain W3C validator