ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosordlem GIF version

Theorem cosordlem 15517
Description: Cosine is decreasing over the closed interval from 0 to π. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1 (𝜑𝐴 ∈ (0[,]π))
cosord.2 (𝜑𝐵 ∈ (0[,]π))
cosord.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
cosordlem (𝜑 → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7 (𝜑𝐵 ∈ (0[,]π))
2 0re 8142 . . . . . . . 8 0 ∈ ℝ
3 pire 15454 . . . . . . . 8 π ∈ ℝ
42, 3elicc2i 10131 . . . . . . 7 (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
51, 4sylib 122 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
65simp1d 1033 . . . . 5 (𝜑𝐵 ∈ ℝ)
76recnd 8171 . . . 4 (𝜑𝐵 ∈ ℂ)
8 cosord.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,]π))
92, 3elicc2i 10131 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
108, 9sylib 122 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
1110simp1d 1033 . . . . 5 (𝜑𝐴 ∈ ℝ)
1211recnd 8171 . . . 4 (𝜑𝐴 ∈ ℂ)
13 subcos 12253 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
147, 12, 13syl2anc 411 . . 3 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
15 2rp 9850 . . . 4 2 ∈ ℝ+
166, 11readdcld 8172 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ∈ ℝ)
1716rehalfcld 9354 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ ℝ)
1817resincld 12229 . . . . . 6 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ)
192a1i 9 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2010simp2d 1034 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
21 cosord.3 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2219, 11, 6, 20, 21lelttrd 8267 . . . . . . . . . 10 (𝜑 → 0 < 𝐵)
236, 11, 22, 20addgtge0d 8663 . . . . . . . . 9 (𝜑 → 0 < (𝐵 + 𝐴))
24 2re 9176 . . . . . . . . . 10 2 ∈ ℝ
25 2pos 9197 . . . . . . . . . 10 0 < 2
26 divgt0 9015 . . . . . . . . . 10 ((((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵 + 𝐴) / 2))
2724, 25, 26mpanr12 439 . . . . . . . . 9 (((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) → 0 < ((𝐵 + 𝐴) / 2))
2816, 23, 27syl2anc 411 . . . . . . . 8 (𝜑 → 0 < ((𝐵 + 𝐴) / 2))
293a1i 9 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
3011, 6, 6, 21ltadd2dd 8565 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝐴) < (𝐵 + 𝐵))
3172timesd 9350 . . . . . . . . . . 11 (𝜑 → (2 · 𝐵) = (𝐵 + 𝐵))
3230, 31breqtrrd 4110 . . . . . . . . . 10 (𝜑 → (𝐵 + 𝐴) < (2 · 𝐵))
3324a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3425a1i 9 . . . . . . . . . . 11 (𝜑 → 0 < 2)
35 ltdivmul 9019 . . . . . . . . . . 11 (((𝐵 + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3616, 6, 33, 34, 35syl112anc 1275 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3732, 36mpbird 167 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝐴) / 2) < 𝐵)
385simp3d 1035 . . . . . . . . 9 (𝜑𝐵 ≤ π)
3917, 6, 29, 37, 38ltletrd 8566 . . . . . . . 8 (𝜑 → ((𝐵 + 𝐴) / 2) < π)
40 0xr 8189 . . . . . . . . 9 0 ∈ ℝ*
413rexri 8200 . . . . . . . . 9 π ∈ ℝ*
42 elioo2 10113 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π)))
4340, 41, 42mp2an 426 . . . . . . . 8 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π))
4417, 28, 39, 43syl3anbrc 1205 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ (0(,)π))
45 sinq12gt0 15498 . . . . . . 7 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4644, 45syl 14 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4718, 46elrpd 9885 . . . . 5 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ+)
486, 11resubcld 8523 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4948rehalfcld 9354 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ ℝ)
5049resincld 12229 . . . . . 6 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
5111, 6posdifd 8675 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5221, 51mpbid 147 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
53 divgt0 9015 . . . . . . . . . 10 ((((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵𝐴) / 2))
5424, 25, 53mpanr12 439 . . . . . . . . 9 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → 0 < ((𝐵𝐴) / 2))
5548, 52, 54syl2anc 411 . . . . . . . 8 (𝜑 → 0 < ((𝐵𝐴) / 2))
56 rehalfcl 9334 . . . . . . . . . 10 (π ∈ ℝ → (π / 2) ∈ ℝ)
573, 56mp1i 10 . . . . . . . . 9 (𝜑 → (π / 2) ∈ ℝ)
586, 11subge02d 8680 . . . . . . . . . . . 12 (𝜑 → (0 ≤ 𝐴 ↔ (𝐵𝐴) ≤ 𝐵))
5920, 58mpbid 147 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ≤ 𝐵)
6048, 6, 29, 59, 38letrd 8266 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≤ π)
61 lediv1 9012 . . . . . . . . . . 11 (((𝐵𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6248, 29, 33, 34, 61syl112anc 1275 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6360, 62mpbid 147 . . . . . . . . 9 (𝜑 → ((𝐵𝐴) / 2) ≤ (π / 2))
64 pirp 15457 . . . . . . . . . 10 π ∈ ℝ+
65 rphalflt 9875 . . . . . . . . . 10 (π ∈ ℝ+ → (π / 2) < π)
6664, 65mp1i 10 . . . . . . . . 9 (𝜑 → (π / 2) < π)
6749, 57, 29, 63, 66lelttrd 8267 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 2) < π)
68 elioo2 10113 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π)))
6940, 41, 68mp2an 426 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π))
7049, 55, 67, 69syl3anbrc 1205 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ (0(,)π))
71 sinq12gt0 15498 . . . . . . 7 (((𝐵𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵𝐴) / 2)))
7270, 71syl 14 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵𝐴) / 2)))
7350, 72elrpd 9885 . . . . 5 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ+)
7447, 73rpmulcld 9905 . . . 4 (𝜑 → ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+)
75 rpmulcl 9870 . . . 4 ((2 ∈ ℝ+ ∧ ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+) → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7615, 74, 75sylancr 414 . . 3 (𝜑 → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7714, 76eqeltrd 2306 . 2 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+)
786recoscld 12230 . . 3 (𝜑 → (cos‘𝐵) ∈ ℝ)
7911recoscld 12230 . . 3 (𝜑 → (cos‘𝐴) ∈ ℝ)
80 difrp 9884 . . 3 (((cos‘𝐵) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8178, 79, 80syl2anc 411 . 2 (𝜑 → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8277, 81mpbird 167 1 (𝜑 → (cos‘𝐵) < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995   + caddc 7998   · cmul 8000  *cxr 8176   < clt 8177  cle 8178  cmin 8313   / cdiv 8815  2c2 9157  +crp 9845  (,)cioo 10080  [,]cicc 10083  sincsin 12150  cosccos 12151  πcpi 12153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-ioc 10085  df-ico 10086  df-icc 10087  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-sin 12156  df-cos 12157  df-pi 12159  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325
This theorem is referenced by:  cosq34lt1  15518  cos02pilt1  15519  cos0pilt1  15520  cos11  15521  ioocosf1o  15522
  Copyright terms: Public domain W3C validator