| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pc1 | GIF version | ||
| Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| pc1 | ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9433 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 1ne0 9139 | . . 3 ⊢ 1 ≠ 0 | |
| 3 | eqid 2207 | . . . 4 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) | |
| 4 | 3 | pczpre 12735 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0)) → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )) |
| 5 | 1, 2, 4 | mpanr12 439 | . 2 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )) |
| 6 | prmuz2 12568 | . . 3 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
| 7 | eqid 2207 | . . 3 ⊢ 1 = 1 | |
| 8 | eqid 2207 | . . . 4 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1} | |
| 9 | 8, 3 | pcpre1 12730 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 1 = 1) → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = 0) |
| 10 | 6, 7, 9 | sylancl 413 | . 2 ⊢ (𝑃 ∈ ℙ → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = 0) |
| 11 | 5, 10 | eqtrd 2240 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 {crab 2490 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 supcsup 7110 ℝcr 7959 0cc0 7960 1c1 7961 < clt 8142 2c2 9122 ℕ0cn0 9330 ℤcz 9407 ℤ≥cuz 9683 ↑cexp 10720 ∥ cdvds 12213 ℙcprime 12544 pCnt cpc 12722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 df-prm 12545 df-pc 12723 |
| This theorem is referenced by: pcrec 12746 pcexp 12747 pcid 12762 pcmpt 12781 pcfac 12788 |
| Copyright terms: Public domain | W3C validator |