| Step | Hyp | Ref
| Expression |
| 1 | | df-nr 7811 |
. 2
⊢
R = ((P × P) /
~R ) |
| 2 | | oveq1 5932 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
·R 1R) = (𝐴
·R
1R)) |
| 3 | | id 19 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) |
| 4 | 2, 3 | eqeq12d 2211 |
. 2
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
·R 1R) = [〈𝑥, 𝑦〉] ~R ↔
(𝐴
·R 1R) = 𝐴)) |
| 5 | | df-1r 7816 |
. . . 4
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R |
| 6 | 5 | oveq2i 5936 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R ·R
1R) = ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R
) |
| 7 | | 1pr 7638 |
. . . . . 6
⊢
1P ∈ P |
| 8 | | addclpr 7621 |
. . . . . 6
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
| 9 | 7, 7, 8 | mp2an 426 |
. . . . 5
⊢
(1P +P
1P) ∈ P |
| 10 | | mulsrpr 7830 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ ((1P +P
1P) ∈ P ∧
1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R ) =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) |
| 11 | 9, 7, 10 | mpanr12 439 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) |
| 12 | | distrprg 7672 |
. . . . . . . . 9
⊢ ((𝑥 ∈ P ∧
1P ∈ P ∧
1P ∈ P) → (𝑥 ·P
(1P +P
1P)) = ((𝑥 ·P
1P) +P (𝑥 ·P
1P))) |
| 13 | 7, 7, 12 | mp3an23 1340 |
. . . . . . . 8
⊢ (𝑥 ∈ P →
(𝑥
·P (1P
+P 1P)) = ((𝑥
·P 1P)
+P (𝑥 ·P
1P))) |
| 14 | | 1idpr 7676 |
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) = 𝑥) |
| 15 | 14 | oveq1d 5940 |
. . . . . . . 8
⊢ (𝑥 ∈ P →
((𝑥
·P 1P)
+P (𝑥 ·P
1P)) = (𝑥 +P (𝑥
·P
1P))) |
| 16 | 13, 15 | eqtr2d 2230 |
. . . . . . 7
⊢ (𝑥 ∈ P →
(𝑥
+P (𝑥 ·P
1P)) = (𝑥 ·P
(1P +P
1P))) |
| 17 | | distrprg 7672 |
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
1P ∈ P ∧
1P ∈ P) → (𝑦 ·P
(1P +P
1P)) = ((𝑦 ·P
1P) +P (𝑦 ·P
1P))) |
| 18 | 7, 7, 17 | mp3an23 1340 |
. . . . . . . 8
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) = ((𝑦
·P 1P)
+P (𝑦 ·P
1P))) |
| 19 | | 1idpr 7676 |
. . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) = 𝑦) |
| 20 | 19 | oveq1d 5940 |
. . . . . . . 8
⊢ (𝑦 ∈ P →
((𝑦
·P 1P)
+P (𝑦 ·P
1P)) = (𝑦 +P (𝑦
·P
1P))) |
| 21 | 18, 20 | eqtrd 2229 |
. . . . . . 7
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) = (𝑦 +P (𝑦
·P
1P))) |
| 22 | 16, 21 | oveqan12d 5944 |
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = ((𝑥 ·P
(1P +P
1P)) +P (𝑦 +P (𝑦
·P
1P)))) |
| 23 | | simpl 109 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ 𝑥 ∈
P) |
| 24 | | mulclpr 7656 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
1P ∈ P) → (𝑥 ·P
1P) ∈ P) |
| 25 | 23, 7, 24 | sylancl 413 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
·P 1P) ∈
P) |
| 26 | | mulclpr 7656 |
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑦 ·P
(1P +P
1P)) ∈ P) |
| 27 | 9, 26 | mpan2 425 |
. . . . . . . 8
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) ∈
P) |
| 28 | 27 | adantl 277 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑦
·P (1P
+P 1P)) ∈
P) |
| 29 | | addassprg 7663 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
(𝑥
·P 1P) ∈
P ∧ (𝑦
·P (1P
+P 1P)) ∈
P) → ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = (𝑥 +P ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))))) |
| 30 | 23, 25, 28, 29 | syl3anc 1249 |
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = (𝑥 +P ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))))) |
| 31 | | mulclpr 7656 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑥 ·P
(1P +P
1P)) ∈ P) |
| 32 | 23, 9, 31 | sylancl 413 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
·P (1P
+P 1P)) ∈
P) |
| 33 | | simpr 110 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ 𝑦 ∈
P) |
| 34 | | mulclpr 7656 |
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
1P ∈ P) → (𝑦 ·P
1P) ∈ P) |
| 35 | 33, 7, 34 | sylancl 413 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑦
·P 1P) ∈
P) |
| 36 | | addcomprg 7662 |
. . . . . . . 8
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P)
→ (𝑧
+P 𝑤) = (𝑤 +P 𝑧)) |
| 37 | 36 | adantl 277 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) |
| 38 | | addassprg 7663 |
. . . . . . . 8
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P
∧ 𝑣 ∈
P) → ((𝑧
+P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P
𝑣))) |
| 39 | 38 | adantl 277 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P ∧ 𝑣 ∈ P)) → ((𝑧 +P
𝑤)
+P 𝑣) = (𝑧 +P (𝑤 +P
𝑣))) |
| 40 | 32, 33, 35, 37, 39 | caov12d 6109 |
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P (1P
+P 1P))
+P (𝑦 +P (𝑦
·P 1P))) = (𝑦 +P
((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)))) |
| 41 | 22, 30, 40 | 3eqtr3d 2237 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)))) |
| 42 | 9, 31 | mpan2 425 |
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P (1P
+P 1P)) ∈
P) |
| 43 | 7, 34 | mpan2 425 |
. . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) ∈
P) |
| 44 | | addclpr 7621 |
. . . . . . . . 9
⊢ (((𝑥
·P (1P
+P 1P)) ∈
P ∧ (𝑦
·P 1P) ∈
P) → ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) |
| 46 | 7, 24 | mpan2 425 |
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) ∈
P) |
| 47 | | addclpr 7621 |
. . . . . . . . 9
⊢ (((𝑥
·P 1P) ∈
P ∧ (𝑦
·P (1P
+P 1P)) ∈
P) → ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) |
| 48 | 46, 27, 47 | syl2an 289 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) |
| 49 | 45, 48 | anim12i 338 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → (((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) |
| 50 | | enreceq 7820 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) |
| 51 | 49, 50 | syldan 282 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) |
| 52 | 51 | anidms 397 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) |
| 53 | 41, 52 | mpbird 167 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ [〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) |
| 54 | 11, 53 | eqtr4d 2232 |
. . 3
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈𝑥, 𝑦〉] ~R
) |
| 55 | 6, 54 | eqtrid 2241 |
. 2
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
1R) = [〈𝑥, 𝑦〉] ~R
) |
| 56 | 1, 4, 55 | ecoptocl 6690 |
1
⊢ (𝐴 ∈ R →
(𝐴
·R 1R) = 𝐴) |