| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-nr 7794 | 
. 2
⊢
R = ((P × P) /
~R ) | 
| 2 |   | oveq1 5929 | 
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
·R 1R) = (𝐴
·R
1R)) | 
| 3 |   | id 19 | 
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | 
| 4 | 2, 3 | eqeq12d 2211 | 
. 2
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
·R 1R) = [〈𝑥, 𝑦〉] ~R ↔
(𝐴
·R 1R) = 𝐴)) | 
| 5 |   | df-1r 7799 | 
. . . 4
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R | 
| 6 | 5 | oveq2i 5933 | 
. . 3
⊢
([〈𝑥, 𝑦〉]
~R ·R
1R) = ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R
) | 
| 7 |   | 1pr 7621 | 
. . . . . 6
⊢
1P ∈ P | 
| 8 |   | addclpr 7604 | 
. . . . . 6
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) | 
| 9 | 7, 7, 8 | mp2an 426 | 
. . . . 5
⊢
(1P +P
1P) ∈ P | 
| 10 |   | mulsrpr 7813 | 
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ ((1P +P
1P) ∈ P ∧
1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈(1P
+P 1P),
1P〉] ~R ) =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) | 
| 11 | 9, 7, 10 | mpanr12 439 | 
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) | 
| 12 |   | distrprg 7655 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ P ∧
1P ∈ P ∧
1P ∈ P) → (𝑥 ·P
(1P +P
1P)) = ((𝑥 ·P
1P) +P (𝑥 ·P
1P))) | 
| 13 | 7, 7, 12 | mp3an23 1340 | 
. . . . . . . 8
⊢ (𝑥 ∈ P →
(𝑥
·P (1P
+P 1P)) = ((𝑥
·P 1P)
+P (𝑥 ·P
1P))) | 
| 14 |   | 1idpr 7659 | 
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) = 𝑥) | 
| 15 | 14 | oveq1d 5937 | 
. . . . . . . 8
⊢ (𝑥 ∈ P →
((𝑥
·P 1P)
+P (𝑥 ·P
1P)) = (𝑥 +P (𝑥
·P
1P))) | 
| 16 | 13, 15 | eqtr2d 2230 | 
. . . . . . 7
⊢ (𝑥 ∈ P →
(𝑥
+P (𝑥 ·P
1P)) = (𝑥 ·P
(1P +P
1P))) | 
| 17 |   | distrprg 7655 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
1P ∈ P ∧
1P ∈ P) → (𝑦 ·P
(1P +P
1P)) = ((𝑦 ·P
1P) +P (𝑦 ·P
1P))) | 
| 18 | 7, 7, 17 | mp3an23 1340 | 
. . . . . . . 8
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) = ((𝑦
·P 1P)
+P (𝑦 ·P
1P))) | 
| 19 |   | 1idpr 7659 | 
. . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) = 𝑦) | 
| 20 | 19 | oveq1d 5937 | 
. . . . . . . 8
⊢ (𝑦 ∈ P →
((𝑦
·P 1P)
+P (𝑦 ·P
1P)) = (𝑦 +P (𝑦
·P
1P))) | 
| 21 | 18, 20 | eqtrd 2229 | 
. . . . . . 7
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) = (𝑦 +P (𝑦
·P
1P))) | 
| 22 | 16, 21 | oveqan12d 5941 | 
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = ((𝑥 ·P
(1P +P
1P)) +P (𝑦 +P (𝑦
·P
1P)))) | 
| 23 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ 𝑥 ∈
P) | 
| 24 |   | mulclpr 7639 | 
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
1P ∈ P) → (𝑥 ·P
1P) ∈ P) | 
| 25 | 23, 7, 24 | sylancl 413 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
·P 1P) ∈
P) | 
| 26 |   | mulclpr 7639 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑦 ·P
(1P +P
1P)) ∈ P) | 
| 27 | 9, 26 | mpan2 425 | 
. . . . . . . 8
⊢ (𝑦 ∈ P →
(𝑦
·P (1P
+P 1P)) ∈
P) | 
| 28 | 27 | adantl 277 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑦
·P (1P
+P 1P)) ∈
P) | 
| 29 |   | addassprg 7646 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
(𝑥
·P 1P) ∈
P ∧ (𝑦
·P (1P
+P 1P)) ∈
P) → ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = (𝑥 +P ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))))) | 
| 30 | 23, 25, 28, 29 | syl3anc 1249 | 
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
+P (𝑥 ·P
1P)) +P (𝑦 ·P
(1P +P
1P))) = (𝑥 +P ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))))) | 
| 31 |   | mulclpr 7639 | 
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
(1P +P
1P) ∈ P) → (𝑥 ·P
(1P +P
1P)) ∈ P) | 
| 32 | 23, 9, 31 | sylancl 413 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
·P (1P
+P 1P)) ∈
P) | 
| 33 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ 𝑦 ∈
P) | 
| 34 |   | mulclpr 7639 | 
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
1P ∈ P) → (𝑦 ·P
1P) ∈ P) | 
| 35 | 33, 7, 34 | sylancl 413 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑦
·P 1P) ∈
P) | 
| 36 |   | addcomprg 7645 | 
. . . . . . . 8
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P)
→ (𝑧
+P 𝑤) = (𝑤 +P 𝑧)) | 
| 37 | 36 | adantl 277 | 
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) | 
| 38 |   | addassprg 7646 | 
. . . . . . . 8
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P
∧ 𝑣 ∈
P) → ((𝑧
+P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P
𝑣))) | 
| 39 | 38 | adantl 277 | 
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P ∧ 𝑣 ∈ P)) → ((𝑧 +P
𝑤)
+P 𝑣) = (𝑧 +P (𝑤 +P
𝑣))) | 
| 40 | 32, 33, 35, 37, 39 | caov12d 6105 | 
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P (1P
+P 1P))
+P (𝑦 +P (𝑦
·P 1P))) = (𝑦 +P
((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)))) | 
| 41 | 22, 30, 40 | 3eqtr3d 2237 | 
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)))) | 
| 42 | 9, 31 | mpan2 425 | 
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P (1P
+P 1P)) ∈
P) | 
| 43 | 7, 34 | mpan2 425 | 
. . . . . . . . 9
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) ∈
P) | 
| 44 |   | addclpr 7604 | 
. . . . . . . . 9
⊢ (((𝑥
·P (1P
+P 1P)) ∈
P ∧ (𝑦
·P 1P) ∈
P) → ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) | 
| 45 | 42, 43, 44 | syl2an 289 | 
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P) | 
| 46 | 7, 24 | mpan2 425 | 
. . . . . . . . 9
⊢ (𝑥 ∈ P →
(𝑥
·P 1P) ∈
P) | 
| 47 |   | addclpr 7604 | 
. . . . . . . . 9
⊢ (((𝑥
·P 1P) ∈
P ∧ (𝑦
·P (1P
+P 1P)) ∈
P) → ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) | 
| 48 | 46, 27, 47 | syl2an 289 | 
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P))) ∈ P) | 
| 49 | 45, 48 | anim12i 338 | 
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → (((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) | 
| 50 |   | enreceq 7803 | 
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)) ∈ P ∧ ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P))) ∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) | 
| 51 | 49, 50 | syldan 282 | 
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) | 
| 52 | 51 | anidms 397 | 
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R ↔ (𝑥 +P
((𝑥
·P 1P)
+P (𝑦 ·P
(1P +P
1P)))) = (𝑦 +P ((𝑥
·P (1P
+P 1P))
+P (𝑦 ·P
1P))))) | 
| 53 | 41, 52 | mpbird 167 | 
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ [〈𝑥, 𝑦〉]
~R = [〈((𝑥 ·P
(1P +P
1P)) +P (𝑦 ·P
1P)), ((𝑥 ·P
1P) +P (𝑦 ·P
(1P +P
1P)))〉] ~R
) | 
| 54 | 11, 53 | eqtr4d 2232 | 
. . 3
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
[〈(1P +P
1P), 1P〉]
~R ) = [〈𝑥, 𝑦〉] ~R
) | 
| 55 | 6, 54 | eqtrid 2241 | 
. 2
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ ([〈𝑥, 𝑦〉]
~R ·R
1R) = [〈𝑥, 𝑦〉] ~R
) | 
| 56 | 1, 4, 55 | ecoptocl 6681 | 
1
⊢ (𝐴 ∈ R →
(𝐴
·R 1R) = 𝐴) |