ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idsr GIF version

Theorem 1idsr 7943
Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
Assertion
Ref Expression
1idsr (𝐴R → (𝐴 ·R 1R) = 𝐴)

Proof of Theorem 1idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7902 . 2 R = ((P × P) / ~R )
2 oveq1 6001 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = (𝐴 ·R 1R))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2244 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 ·R 1R) = 𝐴))
5 df-1r 7907 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
65oveq2i 6005 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R )
7 1pr 7729 . . . . . 6 1PP
8 addclpr 7712 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
97, 7, 8mp2an 426 . . . . 5 (1P +P 1P) ∈ P
10 mulsrpr 7921 . . . . 5 (((𝑥P𝑦P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
119, 7, 10mpanr12 439 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
12 distrprg 7763 . . . . . . . . 9 ((𝑥P ∧ 1PP ∧ 1PP) → (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P)))
137, 7, 12mp3an23 1363 . . . . . . . 8 (𝑥P → (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P)))
14 1idpr 7767 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) = 𝑥)
1514oveq1d 6009 . . . . . . . 8 (𝑥P → ((𝑥 ·P 1P) +P (𝑥 ·P 1P)) = (𝑥 +P (𝑥 ·P 1P)))
1613, 15eqtr2d 2263 . . . . . . 7 (𝑥P → (𝑥 +P (𝑥 ·P 1P)) = (𝑥 ·P (1P +P 1P)))
17 distrprg 7763 . . . . . . . . 9 ((𝑦P ∧ 1PP ∧ 1PP) → (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P)))
187, 7, 17mp3an23 1363 . . . . . . . 8 (𝑦P → (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P)))
19 1idpr 7767 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) = 𝑦)
2019oveq1d 6009 . . . . . . . 8 (𝑦P → ((𝑦 ·P 1P) +P (𝑦 ·P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2118, 20eqtrd 2262 . . . . . . 7 (𝑦P → (𝑦 ·P (1P +P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2216, 21oveqan12d 6013 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))))
23 simpl 109 . . . . . . 7 ((𝑥P𝑦P) → 𝑥P)
24 mulclpr 7747 . . . . . . . 8 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
2523, 7, 24sylancl 413 . . . . . . 7 ((𝑥P𝑦P) → (𝑥 ·P 1P) ∈ P)
26 mulclpr 7747 . . . . . . . . 9 ((𝑦P ∧ (1P +P 1P) ∈ P) → (𝑦 ·P (1P +P 1P)) ∈ P)
279, 26mpan2 425 . . . . . . . 8 (𝑦P → (𝑦 ·P (1P +P 1P)) ∈ P)
2827adantl 277 . . . . . . 7 ((𝑥P𝑦P) → (𝑦 ·P (1P +P 1P)) ∈ P)
29 addassprg 7754 . . . . . . 7 ((𝑥P ∧ (𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))))
3023, 25, 28, 29syl3anc 1271 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))))
31 mulclpr 7747 . . . . . . . 8 ((𝑥P ∧ (1P +P 1P) ∈ P) → (𝑥 ·P (1P +P 1P)) ∈ P)
3223, 9, 31sylancl 413 . . . . . . 7 ((𝑥P𝑦P) → (𝑥 ·P (1P +P 1P)) ∈ P)
33 simpr 110 . . . . . . 7 ((𝑥P𝑦P) → 𝑦P)
34 mulclpr 7747 . . . . . . . 8 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
3533, 7, 34sylancl 413 . . . . . . 7 ((𝑥P𝑦P) → (𝑦 ·P 1P) ∈ P)
36 addcomprg 7753 . . . . . . . 8 ((𝑧P𝑤P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
3736adantl 277 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
38 addassprg 7754 . . . . . . . 8 ((𝑧P𝑤P𝑣P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
3938adantl 277 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P𝑣P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
4032, 33, 35, 37, 39caov12d 6178 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
4122, 30, 403eqtr3d 2270 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
429, 31mpan2 425 . . . . . . . . 9 (𝑥P → (𝑥 ·P (1P +P 1P)) ∈ P)
437, 34mpan2 425 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
44 addclpr 7712 . . . . . . . . 9 (((𝑥 ·P (1P +P 1P)) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
4542, 43, 44syl2an 289 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
467, 24mpan2 425 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
47 addclpr 7712 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4846, 27, 47syl2an 289 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4945, 48anim12i 338 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P))
50 enreceq 7911 . . . . . . 7 (((𝑥P𝑦P) ∧ (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5149, 50syldan 282 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5251anidms 397 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5341, 52mpbird 167 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
5411, 53eqtr4d 2265 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
556, 54eqtrid 2274 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R )
561, 4, 55ecoptocl 6759 1 (𝐴R → (𝐴 ·R 1R) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669  (class class class)co 5994  [cec 6668  Pcnp 7466  1Pc1p 7467   +P cpp 7468   ·P cmp 7469   ~R cer 7471  Rcnr 7472  1Rc1r 7474   ·R cmr 7477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-i1p 7642  df-iplp 7643  df-imp 7644  df-enr 7901  df-nr 7902  df-mr 7904  df-1r 7907
This theorem is referenced by:  pn0sr  7946  axi2m1  8050  ax1rid  8052  axcnre  8056
  Copyright terms: Public domain W3C validator