ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idsr GIF version

Theorem 1idsr 7894
Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
Assertion
Ref Expression
1idsr (𝐴R → (𝐴 ·R 1R) = 𝐴)

Proof of Theorem 1idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7853 . 2 R = ((P × P) / ~R )
2 oveq1 5961 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = (𝐴 ·R 1R))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2221 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 ·R 1R) = 𝐴))
5 df-1r 7858 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
65oveq2i 5965 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R )
7 1pr 7680 . . . . . 6 1PP
8 addclpr 7663 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
97, 7, 8mp2an 426 . . . . 5 (1P +P 1P) ∈ P
10 mulsrpr 7872 . . . . 5 (((𝑥P𝑦P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
119, 7, 10mpanr12 439 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
12 distrprg 7714 . . . . . . . . 9 ((𝑥P ∧ 1PP ∧ 1PP) → (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P)))
137, 7, 12mp3an23 1342 . . . . . . . 8 (𝑥P → (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P)))
14 1idpr 7718 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) = 𝑥)
1514oveq1d 5969 . . . . . . . 8 (𝑥P → ((𝑥 ·P 1P) +P (𝑥 ·P 1P)) = (𝑥 +P (𝑥 ·P 1P)))
1613, 15eqtr2d 2240 . . . . . . 7 (𝑥P → (𝑥 +P (𝑥 ·P 1P)) = (𝑥 ·P (1P +P 1P)))
17 distrprg 7714 . . . . . . . . 9 ((𝑦P ∧ 1PP ∧ 1PP) → (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P)))
187, 7, 17mp3an23 1342 . . . . . . . 8 (𝑦P → (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P)))
19 1idpr 7718 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) = 𝑦)
2019oveq1d 5969 . . . . . . . 8 (𝑦P → ((𝑦 ·P 1P) +P (𝑦 ·P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2118, 20eqtrd 2239 . . . . . . 7 (𝑦P → (𝑦 ·P (1P +P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2216, 21oveqan12d 5973 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))))
23 simpl 109 . . . . . . 7 ((𝑥P𝑦P) → 𝑥P)
24 mulclpr 7698 . . . . . . . 8 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
2523, 7, 24sylancl 413 . . . . . . 7 ((𝑥P𝑦P) → (𝑥 ·P 1P) ∈ P)
26 mulclpr 7698 . . . . . . . . 9 ((𝑦P ∧ (1P +P 1P) ∈ P) → (𝑦 ·P (1P +P 1P)) ∈ P)
279, 26mpan2 425 . . . . . . . 8 (𝑦P → (𝑦 ·P (1P +P 1P)) ∈ P)
2827adantl 277 . . . . . . 7 ((𝑥P𝑦P) → (𝑦 ·P (1P +P 1P)) ∈ P)
29 addassprg 7705 . . . . . . 7 ((𝑥P ∧ (𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))))
3023, 25, 28, 29syl3anc 1250 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))))
31 mulclpr 7698 . . . . . . . 8 ((𝑥P ∧ (1P +P 1P) ∈ P) → (𝑥 ·P (1P +P 1P)) ∈ P)
3223, 9, 31sylancl 413 . . . . . . 7 ((𝑥P𝑦P) → (𝑥 ·P (1P +P 1P)) ∈ P)
33 simpr 110 . . . . . . 7 ((𝑥P𝑦P) → 𝑦P)
34 mulclpr 7698 . . . . . . . 8 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
3533, 7, 34sylancl 413 . . . . . . 7 ((𝑥P𝑦P) → (𝑦 ·P 1P) ∈ P)
36 addcomprg 7704 . . . . . . . 8 ((𝑧P𝑤P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
3736adantl 277 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
38 addassprg 7705 . . . . . . . 8 ((𝑧P𝑤P𝑣P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
3938adantl 277 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P𝑣P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
4032, 33, 35, 37, 39caov12d 6138 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
4122, 30, 403eqtr3d 2247 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
429, 31mpan2 425 . . . . . . . . 9 (𝑥P → (𝑥 ·P (1P +P 1P)) ∈ P)
437, 34mpan2 425 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
44 addclpr 7663 . . . . . . . . 9 (((𝑥 ·P (1P +P 1P)) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
4542, 43, 44syl2an 289 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
467, 24mpan2 425 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
47 addclpr 7663 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4846, 27, 47syl2an 289 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4945, 48anim12i 338 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P))
50 enreceq 7862 . . . . . . 7 (((𝑥P𝑦P) ∧ (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5149, 50syldan 282 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5251anidms 397 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5341, 52mpbird 167 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
5411, 53eqtr4d 2242 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
556, 54eqtrid 2251 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R )
561, 4, 55ecoptocl 6719 1 (𝐴R → (𝐴 ·R 1R) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  cop 3638  (class class class)co 5954  [cec 6628  Pcnp 7417  1Pc1p 7418   +P cpp 7419   ·P cmp 7420   ~R cer 7422  Rcnr 7423  1Rc1r 7425   ·R cmr 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-2o 6513  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-enq0 7550  df-nq0 7551  df-0nq0 7552  df-plq0 7553  df-mq0 7554  df-inp 7592  df-i1p 7593  df-iplp 7594  df-imp 7595  df-enr 7852  df-nr 7853  df-mr 7855  df-1r 7858
This theorem is referenced by:  pn0sr  7897  axi2m1  8001  ax1rid  8003  axcnre  8007
  Copyright terms: Public domain W3C validator