| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulidnq | GIF version | ||
| Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) |
| Ref | Expression |
|---|---|
| mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7503 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 2 | oveq1 5981 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = (𝐴 ·Q 1Q)) | |
| 3 | id 19 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → [〈𝑥, 𝑦〉] ~Q = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2224 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → (([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈𝑥, 𝑦〉] ~Q ↔ (𝐴 ·Q 1Q) = 𝐴)) |
| 5 | df-1nqqs 7506 | . . . . 5 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 6 | 5 | oveq2i 5985 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) |
| 7 | 1pi 7470 | . . . . 5 ⊢ 1o ∈ N | |
| 8 | mulpipqqs 7528 | . . . . 5 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) | |
| 9 | 7, 7, 8 | mpanr12 439 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
| 10 | 6, 9 | eqtrid 2254 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
| 11 | mulcompig 7486 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) | |
| 12 | 7, 11 | mpan 424 | . . . . . 6 ⊢ (𝑥 ∈ N → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
| 13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
| 14 | mulcompig 7486 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) | |
| 15 | 7, 14 | mpan 424 | . . . . . 6 ⊢ (𝑦 ∈ N → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
| 16 | 15 | adantl 277 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
| 17 | 13, 16 | opeq12d 3844 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → 〈(1o ·N 𝑥), (1o ·N 𝑦)〉 = 〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉) |
| 18 | 17 | eceq1d 6686 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
| 19 | mulcanenqec 7541 | . . . 4 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈𝑥, 𝑦〉] ~Q ) | |
| 20 | 7, 19 | mp3an1 1339 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈𝑥, 𝑦〉] ~Q ) |
| 21 | 10, 18, 20 | 3eqtr2d 2248 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈𝑥, 𝑦〉] ~Q ) |
| 22 | 1, 4, 21 | ecoptocl 6739 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 〈cop 3649 (class class class)co 5974 1oc1o 6525 [cec 6648 Ncnpi 7427 ·N cmi 7429 ~Q ceq 7434 Qcnq 7435 1Qc1q 7436 ·Q cmq 7438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-mi 7461 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-mqqs 7505 df-1nqqs 7506 |
| This theorem is referenced by: recmulnqg 7546 rec1nq 7550 ltaddnq 7562 halfnqq 7565 prarloclemarch 7573 ltrnqg 7575 addnqprllem 7682 addnqprulem 7683 addnqprl 7684 addnqpru 7685 appdivnq 7718 prmuloc2 7722 mulnqprl 7723 mulnqpru 7724 1idprl 7745 1idpru 7746 recexprlem1ssl 7788 recexprlem1ssu 7789 |
| Copyright terms: Public domain | W3C validator |