![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulidnq | GIF version |
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) |
Ref | Expression |
---|---|
mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7349 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
2 | oveq1 5884 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = (𝐴 ·Q 1Q)) | |
3 | id 19 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → [⟨𝑥, 𝑦⟩] ~Q = 𝐴) | |
4 | 2, 3 | eqeq12d 2192 | . 2 ⊢ ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨𝑥, 𝑦⟩] ~Q ↔ (𝐴 ·Q 1Q) = 𝐴)) |
5 | df-1nqqs 7352 | . . . . 5 ⊢ 1Q = [⟨1o, 1o⟩] ~Q | |
6 | 5 | oveq2i 5888 | . . . 4 ⊢ ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q ) |
7 | 1pi 7316 | . . . . 5 ⊢ 1o ∈ N | |
8 | mulpipqqs 7374 | . . . . 5 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q ) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q ) | |
9 | 7, 7, 8 | mpanr12 439 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q ) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q ) |
10 | 6, 9 | eqtrid 2222 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q ) |
11 | mulcompig 7332 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) | |
12 | 7, 11 | mpan 424 | . . . . . 6 ⊢ (𝑥 ∈ N → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
14 | mulcompig 7332 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) | |
15 | 7, 14 | mpan 424 | . . . . . 6 ⊢ (𝑦 ∈ N → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
16 | 15 | adantl 277 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
17 | 13, 16 | opeq12d 3788 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩ = ⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩) |
18 | 17 | eceq1d 6573 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q ) |
19 | mulcanenqec 7387 | . . . 4 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N ∧ 𝑦 ∈ N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨𝑥, 𝑦⟩] ~Q ) | |
20 | 7, 19 | mp3an1 1324 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨𝑥, 𝑦⟩] ~Q ) |
21 | 10, 18, 20 | 3eqtr2d 2216 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨𝑥, 𝑦⟩] ~Q ) |
22 | 1, 4, 21 | ecoptocl 6624 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 (class class class)co 5877 1oc1o 6412 [cec 6535 Ncnpi 7273 ·N cmi 7275 ~Q ceq 7280 Qcnq 7281 1Qc1q 7282 ·Q cmq 7284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-mi 7307 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-mqqs 7351 df-1nqqs 7352 |
This theorem is referenced by: recmulnqg 7392 rec1nq 7396 ltaddnq 7408 halfnqq 7411 prarloclemarch 7419 ltrnqg 7421 addnqprllem 7528 addnqprulem 7529 addnqprl 7530 addnqpru 7531 appdivnq 7564 prmuloc2 7568 mulnqprl 7569 mulnqpru 7570 1idprl 7591 1idpru 7592 recexprlem1ssl 7634 recexprlem1ssu 7635 |
Copyright terms: Public domain | W3C validator |