ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulidnq GIF version

Theorem mulidnq 7584
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.)
Assertion
Ref Expression
mulidnq (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)

Proof of Theorem mulidnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7543 . 2 Q = ((N × N) / ~Q )
2 oveq1 6014 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = (𝐴 ·Q 1Q))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → [⟨𝑥, 𝑦⟩] ~Q = 𝐴)
42, 3eqeq12d 2244 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨𝑥, 𝑦⟩] ~Q ↔ (𝐴 ·Q 1Q) = 𝐴))
5 df-1nqqs 7546 . . . . 5 1Q = [⟨1o, 1o⟩] ~Q
65oveq2i 6018 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q )
7 1pi 7510 . . . . 5 1oN
8 mulpipqqs 7568 . . . . 5 (((𝑥N𝑦N) ∧ (1oN ∧ 1oN)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q ) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
97, 7, 8mpanr12 439 . . . 4 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q ) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
106, 9eqtrid 2274 . . 3 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
11 mulcompig 7526 . . . . . . 7 ((1oN𝑥N) → (1o ·N 𝑥) = (𝑥 ·N 1o))
127, 11mpan 424 . . . . . 6 (𝑥N → (1o ·N 𝑥) = (𝑥 ·N 1o))
1312adantr 276 . . . . 5 ((𝑥N𝑦N) → (1o ·N 𝑥) = (𝑥 ·N 1o))
14 mulcompig 7526 . . . . . . 7 ((1oN𝑦N) → (1o ·N 𝑦) = (𝑦 ·N 1o))
157, 14mpan 424 . . . . . 6 (𝑦N → (1o ·N 𝑦) = (𝑦 ·N 1o))
1615adantl 277 . . . . 5 ((𝑥N𝑦N) → (1o ·N 𝑦) = (𝑦 ·N 1o))
1713, 16opeq12d 3865 . . . 4 ((𝑥N𝑦N) → ⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩ = ⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩)
1817eceq1d 6724 . . 3 ((𝑥N𝑦N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
19 mulcanenqec 7581 . . . 4 ((1oN𝑥N𝑦N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨𝑥, 𝑦⟩] ~Q )
207, 19mp3an1 1358 . . 3 ((𝑥N𝑦N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨𝑥, 𝑦⟩] ~Q )
2110, 18, 203eqtr2d 2268 . 2 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨𝑥, 𝑦⟩] ~Q )
221, 4, 21ecoptocl 6777 1 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cop 3669  (class class class)co 6007  1oc1o 6561  [cec 6686  Ncnpi 7467   ·N cmi 7469   ~Q ceq 7474  Qcnq 7475  1Qc1q 7476   ·Q cmq 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-mqqs 7545  df-1nqqs 7546
This theorem is referenced by:  recmulnqg  7586  rec1nq  7590  ltaddnq  7602  halfnqq  7605  prarloclemarch  7613  ltrnqg  7615  addnqprllem  7722  addnqprulem  7723  addnqprl  7724  addnqpru  7725  appdivnq  7758  prmuloc2  7762  mulnqprl  7763  mulnqpru  7764  1idprl  7785  1idpru  7786  recexprlem1ssl  7828  recexprlem1ssu  7829
  Copyright terms: Public domain W3C validator