Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulidnq | GIF version |
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) |
Ref | Expression |
---|---|
mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7310 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
2 | oveq1 5860 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = (𝐴 ·Q 1Q)) | |
3 | id 19 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → [〈𝑥, 𝑦〉] ~Q = 𝐴) | |
4 | 2, 3 | eqeq12d 2185 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → (([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈𝑥, 𝑦〉] ~Q ↔ (𝐴 ·Q 1Q) = 𝐴)) |
5 | df-1nqqs 7313 | . . . . 5 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
6 | 5 | oveq2i 5864 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) |
7 | 1pi 7277 | . . . . 5 ⊢ 1o ∈ N | |
8 | mulpipqqs 7335 | . . . . 5 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) | |
9 | 7, 7, 8 | mpanr12 437 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
10 | 6, 9 | eqtrid 2215 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
11 | mulcompig 7293 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) | |
12 | 7, 11 | mpan 422 | . . . . . 6 ⊢ (𝑥 ∈ N → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
13 | 12 | adantr 274 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
14 | mulcompig 7293 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) | |
15 | 7, 14 | mpan 422 | . . . . . 6 ⊢ (𝑦 ∈ N → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
16 | 15 | adantl 275 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
17 | 13, 16 | opeq12d 3773 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → 〈(1o ·N 𝑥), (1o ·N 𝑦)〉 = 〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉) |
18 | 17 | eceq1d 6549 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
19 | mulcanenqec 7348 | . . . 4 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈𝑥, 𝑦〉] ~Q ) | |
20 | 7, 19 | mp3an1 1319 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈𝑥, 𝑦〉] ~Q ) |
21 | 10, 18, 20 | 3eqtr2d 2209 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈𝑥, 𝑦〉] ~Q ) |
22 | 1, 4, 21 | ecoptocl 6600 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 〈cop 3586 (class class class)co 5853 1oc1o 6388 [cec 6511 Ncnpi 7234 ·N cmi 7236 ~Q ceq 7241 Qcnq 7242 1Qc1q 7243 ·Q cmq 7245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-mqqs 7312 df-1nqqs 7313 |
This theorem is referenced by: recmulnqg 7353 rec1nq 7357 ltaddnq 7369 halfnqq 7372 prarloclemarch 7380 ltrnqg 7382 addnqprllem 7489 addnqprulem 7490 addnqprl 7491 addnqpru 7492 appdivnq 7525 prmuloc2 7529 mulnqprl 7530 mulnqpru 7531 1idprl 7552 1idpru 7553 recexprlem1ssl 7595 recexprlem1ssu 7596 |
Copyright terms: Public domain | W3C validator |