Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulidnq | GIF version |
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) |
Ref | Expression |
---|---|
mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7289 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
2 | oveq1 5849 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = (𝐴 ·Q 1Q)) | |
3 | id 19 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → [〈𝑥, 𝑦〉] ~Q = 𝐴) | |
4 | 2, 3 | eqeq12d 2180 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~Q = 𝐴 → (([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈𝑥, 𝑦〉] ~Q ↔ (𝐴 ·Q 1Q) = 𝐴)) |
5 | df-1nqqs 7292 | . . . . 5 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
6 | 5 | oveq2i 5853 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) |
7 | 1pi 7256 | . . . . 5 ⊢ 1o ∈ N | |
8 | mulpipqqs 7314 | . . . . 5 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) | |
9 | 7, 7, 8 | mpanr12 436 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈1o, 1o〉] ~Q ) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
10 | 6, 9 | syl5eq 2211 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
11 | mulcompig 7272 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) | |
12 | 7, 11 | mpan 421 | . . . . . 6 ⊢ (𝑥 ∈ N → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
13 | 12 | adantr 274 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑥) = (𝑥 ·N 1o)) |
14 | mulcompig 7272 | . . . . . . 7 ⊢ ((1o ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) | |
15 | 7, 14 | mpan 421 | . . . . . 6 ⊢ (𝑦 ∈ N → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
16 | 15 | adantl 275 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (1o ·N 𝑦) = (𝑦 ·N 1o)) |
17 | 13, 16 | opeq12d 3766 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → 〈(1o ·N 𝑥), (1o ·N 𝑦)〉 = 〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉) |
18 | 17 | eceq1d 6537 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈(𝑥 ·N 1o), (𝑦 ·N 1o)〉] ~Q ) |
19 | mulcanenqec 7327 | . . . 4 ⊢ ((1o ∈ N ∧ 𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈𝑥, 𝑦〉] ~Q ) | |
20 | 7, 19 | mp3an1 1314 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → [〈(1o ·N 𝑥), (1o ·N 𝑦)〉] ~Q = [〈𝑥, 𝑦〉] ~Q ) |
21 | 10, 18, 20 | 3eqtr2d 2204 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → ([〈𝑥, 𝑦〉] ~Q ·Q 1Q) = [〈𝑥, 𝑦〉] ~Q ) |
22 | 1, 4, 21 | ecoptocl 6588 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 〈cop 3579 (class class class)co 5842 1oc1o 6377 [cec 6499 Ncnpi 7213 ·N cmi 7215 ~Q ceq 7220 Qcnq 7221 1Qc1q 7222 ·Q cmq 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-mi 7247 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-mqqs 7291 df-1nqqs 7292 |
This theorem is referenced by: recmulnqg 7332 rec1nq 7336 ltaddnq 7348 halfnqq 7351 prarloclemarch 7359 ltrnqg 7361 addnqprllem 7468 addnqprulem 7469 addnqprl 7470 addnqpru 7471 appdivnq 7504 prmuloc2 7508 mulnqprl 7509 mulnqpru 7510 1idprl 7531 1idpru 7532 recexprlem1ssl 7574 recexprlem1ssu 7575 |
Copyright terms: Public domain | W3C validator |