ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulidnq GIF version

Theorem mulidnq 7390
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.)
Assertion
Ref Expression
mulidnq (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)

Proof of Theorem mulidnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7349 . 2 Q = ((N × N) / ~Q )
2 oveq1 5884 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = (𝐴 ·Q 1Q))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → [⟨𝑥, 𝑦⟩] ~Q = 𝐴)
42, 3eqeq12d 2192 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨𝑥, 𝑦⟩] ~Q ↔ (𝐴 ·Q 1Q) = 𝐴))
5 df-1nqqs 7352 . . . . 5 1Q = [⟨1o, 1o⟩] ~Q
65oveq2i 5888 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q )
7 1pi 7316 . . . . 5 1oN
8 mulpipqqs 7374 . . . . 5 (((𝑥N𝑦N) ∧ (1oN ∧ 1oN)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q ) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
97, 7, 8mpanr12 439 . . . 4 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨1o, 1o⟩] ~Q ) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
106, 9eqtrid 2222 . . 3 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
11 mulcompig 7332 . . . . . . 7 ((1oN𝑥N) → (1o ·N 𝑥) = (𝑥 ·N 1o))
127, 11mpan 424 . . . . . 6 (𝑥N → (1o ·N 𝑥) = (𝑥 ·N 1o))
1312adantr 276 . . . . 5 ((𝑥N𝑦N) → (1o ·N 𝑥) = (𝑥 ·N 1o))
14 mulcompig 7332 . . . . . . 7 ((1oN𝑦N) → (1o ·N 𝑦) = (𝑦 ·N 1o))
157, 14mpan 424 . . . . . 6 (𝑦N → (1o ·N 𝑦) = (𝑦 ·N 1o))
1615adantl 277 . . . . 5 ((𝑥N𝑦N) → (1o ·N 𝑦) = (𝑦 ·N 1o))
1713, 16opeq12d 3788 . . . 4 ((𝑥N𝑦N) → ⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩ = ⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩)
1817eceq1d 6573 . . 3 ((𝑥N𝑦N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨(𝑥 ·N 1o), (𝑦 ·N 1o)⟩] ~Q )
19 mulcanenqec 7387 . . . 4 ((1oN𝑥N𝑦N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨𝑥, 𝑦⟩] ~Q )
207, 19mp3an1 1324 . . 3 ((𝑥N𝑦N) → [⟨(1o ·N 𝑥), (1o ·N 𝑦)⟩] ~Q = [⟨𝑥, 𝑦⟩] ~Q )
2110, 18, 203eqtr2d 2216 . 2 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q ·Q 1Q) = [⟨𝑥, 𝑦⟩] ~Q )
221, 4, 21ecoptocl 6624 1 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cop 3597  (class class class)co 5877  1oc1o 6412  [cec 6535  Ncnpi 7273   ·N cmi 7275   ~Q ceq 7280  Qcnq 7281  1Qc1q 7282   ·Q cmq 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-mi 7307  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-mqqs 7351  df-1nqqs 7352
This theorem is referenced by:  recmulnqg  7392  rec1nq  7396  ltaddnq  7408  halfnqq  7411  prarloclemarch  7419  ltrnqg  7421  addnqprllem  7528  addnqprulem  7529  addnqprl  7530  addnqpru  7531  appdivnq  7564  prmuloc2  7568  mulnqprl  7569  mulnqpru  7570  1idprl  7591  1idpru  7592  recexprlem1ssl  7634  recexprlem1ssu  7635
  Copyright terms: Public domain W3C validator