ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elunit GIF version

Theorem 0elunit 9989
Description: Zero is an element of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
0elunit 0 ∈ (0[,]1)

Proof of Theorem 0elunit
StepHypRef Expression
1 0re 7960 . 2 0 ∈ ℝ
2 0le0 9011 . 2 0 ≤ 0
3 0le1 8441 . 2 0 ≤ 1
4 1re 7959 . . 3 1 ∈ ℝ
51, 4elicc2i 9942 . 2 (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1))
61, 2, 3, 5mpbir3an 1179 1 0 ∈ (0[,]1)
Colors of variables: wff set class
Syntax hints:  wcel 2148   class class class wbr 4005  (class class class)co 5878  cr 7813  0cc0 7814  1c1 7815  cle 7996  [,]cicc 9894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911  ax-0lt1 7920  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-icc 9898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator