| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
| mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
| mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
| mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Ref | Expression |
|---|---|
| mpbir3and | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 4 | 1, 2, 3 | 3jca 1180 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 6 | 4, 5 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ixxss1 10033 ixxss2 10034 ixxss12 10035 ubioc1 10058 lbico1 10059 lbicc2 10113 ubicc2 10114 elicod 10414 modqelico 10486 zmodfz 10498 modqmuladdim 10519 addmodid 10524 phicl2 12580 4sqlem12 12769 isstruct2r 12887 issubmd 13350 mndissubm 13351 submid 13353 subsubm 13359 0subm 13360 mhmima 13367 mhmeql 13368 issubgrpd2 13570 grpissubg 13574 subgintm 13578 nmzsubg 13590 eqger 13604 eqgcpbl 13608 ghmrn 13637 ghmpreima 13646 unitsubm 13925 subrgsubm 14040 subrgugrp 14046 subrgintm 14049 islssmd 14165 lsssubg 14183 islss4 14188 issubrgd 14258 lidlsubg 14292 2idlcpblrng 14329 mplsubgfi 14507 lmtopcnp 14766 xmeter 14952 tgqioo 15071 suplociccreex 15140 dedekindicc 15149 ivthinclemlopn 15152 ivthinclemuopn 15154 sin0pilem2 15298 pilem3 15299 coseq0q4123 15350 |
| Copyright terms: Public domain | W3C validator |