![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
Ref | Expression |
---|---|
mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Ref | Expression |
---|---|
mpbir3and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
4 | 1, 2, 3 | 3jca 1179 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
6 | 4, 5 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ixxss1 9970 ixxss2 9971 ixxss12 9972 ubioc1 9995 lbico1 9996 lbicc2 10050 ubicc2 10051 elicod 10333 modqelico 10405 zmodfz 10417 modqmuladdim 10438 addmodid 10443 phicl2 12352 4sqlem12 12540 isstruct2r 12629 issubmd 13046 mndissubm 13047 submid 13049 subsubm 13055 0subm 13056 mhmima 13063 mhmeql 13064 issubgrpd2 13260 grpissubg 13264 subgintm 13268 nmzsubg 13280 eqger 13294 eqgcpbl 13298 ghmrn 13327 ghmpreima 13336 unitsubm 13615 subrgsubm 13730 subrgugrp 13736 subrgintm 13739 islssmd 13855 lsssubg 13873 islss4 13878 issubrgd 13948 lidlsubg 13982 2idlcpblrng 14019 lmtopcnp 14418 xmeter 14604 tgqioo 14715 suplociccreex 14778 dedekindicc 14787 ivthinclemlopn 14790 ivthinclemuopn 14792 sin0pilem2 14917 pilem3 14918 coseq0q4123 14969 |
Copyright terms: Public domain | W3C validator |