![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
Ref | Expression |
---|---|
mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Ref | Expression |
---|---|
mpbir3and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
4 | 1, 2, 3 | 3jca 1124 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
6 | 4, 5 | mpbird 166 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 925 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: ixxss1 9385 ixxss2 9386 ixxss12 9387 ubioc1 9410 lbico1 9411 lbicc2 9464 ubicc2 9465 modqelico 9804 zmodfz 9816 modqmuladdim 9837 addmodid 9842 phicl2 11531 isstruct2r 11568 |
Copyright terms: Public domain | W3C validator |