| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
| mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
| mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
| mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Ref | Expression |
|---|---|
| mpbir3and | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 4 | 1, 2, 3 | 3jca 1179 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 6 | 4, 5 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ixxss1 9998 ixxss2 9999 ixxss12 10000 ubioc1 10023 lbico1 10024 lbicc2 10078 ubicc2 10079 elicod 10373 modqelico 10445 zmodfz 10457 modqmuladdim 10478 addmodid 10483 phicl2 12409 4sqlem12 12598 isstruct2r 12716 issubmd 13178 mndissubm 13179 submid 13181 subsubm 13187 0subm 13188 mhmima 13195 mhmeql 13196 issubgrpd2 13398 grpissubg 13402 subgintm 13406 nmzsubg 13418 eqger 13432 eqgcpbl 13436 ghmrn 13465 ghmpreima 13474 unitsubm 13753 subrgsubm 13868 subrgugrp 13874 subrgintm 13877 islssmd 13993 lsssubg 14011 islss4 14016 issubrgd 14086 lidlsubg 14120 2idlcpblrng 14157 lmtopcnp 14572 xmeter 14758 tgqioo 14877 suplociccreex 14946 dedekindicc 14955 ivthinclemlopn 14958 ivthinclemuopn 14960 sin0pilem2 15104 pilem3 15105 coseq0q4123 15156 |
| Copyright terms: Public domain | W3C validator |