| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
| mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
| mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
| mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Ref | Expression |
|---|---|
| mpbir3and | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 4 | 1, 2, 3 | 3jca 1182 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 6 | 4, 5 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: ixxss1 10068 ixxss2 10069 ixxss12 10070 ubioc1 10093 lbico1 10094 lbicc2 10148 ubicc2 10149 elicod 10451 modqelico 10523 zmodfz 10535 modqmuladdim 10556 addmodid 10561 phicl2 12702 4sqlem12 12891 isstruct2r 13009 issubmd 13473 mndissubm 13474 submid 13476 subsubm 13482 0subm 13483 mhmima 13490 mhmeql 13491 issubgrpd2 13693 grpissubg 13697 subgintm 13701 nmzsubg 13713 eqger 13727 eqgcpbl 13731 ghmrn 13760 ghmpreima 13769 unitsubm 14048 subrgsubm 14163 subrgugrp 14169 subrgintm 14172 islssmd 14288 lsssubg 14306 islss4 14311 issubrgd 14381 lidlsubg 14415 2idlcpblrng 14452 mplsubgfi 14630 lmtopcnp 14889 xmeter 15075 tgqioo 15194 suplociccreex 15263 dedekindicc 15272 ivthinclemlopn 15275 ivthinclemuopn 15277 sin0pilem2 15421 pilem3 15422 coseq0q4123 15473 |
| Copyright terms: Public domain | W3C validator |