ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbir3and GIF version

Theorem mpbir3and 1175
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.)
Hypotheses
Ref Expression
mpbir3and.1 (𝜑𝜒)
mpbir3and.2 (𝜑𝜃)
mpbir3and.3 (𝜑𝜏)
mpbir3and.4 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
Assertion
Ref Expression
mpbir3and (𝜑𝜓)

Proof of Theorem mpbir3and
StepHypRef Expression
1 mpbir3and.1 . . 3 (𝜑𝜒)
2 mpbir3and.2 . . 3 (𝜑𝜃)
3 mpbir3and.3 . . 3 (𝜑𝜏)
41, 2, 33jca 1172 . 2 (𝜑 → (𝜒𝜃𝜏))
5 mpbir3and.4 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
64, 5mpbird 166 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  ixxss1  9861  ixxss2  9862  ixxss12  9863  ubioc1  9886  lbico1  9887  lbicc2  9941  ubicc2  9942  elicod  10221  modqelico  10290  zmodfz  10302  modqmuladdim  10323  addmodid  10328  phicl2  12168  isstruct2r  12427  issubmd  12696  mndissubm  12697  submid  12699  0subm  12702  mhmima  12706  mhmeql  12707  lmtopcnp  13044  xmeter  13230  tgqioo  13341  suplociccreex  13396  dedekindicc  13405  ivthinclemlopn  13408  ivthinclemuopn  13410  sin0pilem2  13497  pilem3  13498  coseq0q4123  13549
  Copyright terms: Public domain W3C validator