| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
| mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
| mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
| mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Ref | Expression |
|---|---|
| mpbir3and | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 4 | 1, 2, 3 | 3jca 1201 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 6 | 4, 5 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ixxss1 10108 ixxss2 10109 ixxss12 10110 ubioc1 10133 lbico1 10134 lbicc2 10188 ubicc2 10189 elicod 10492 modqelico 10564 zmodfz 10576 modqmuladdim 10597 addmodid 10602 phicl2 12744 4sqlem12 12933 isstruct2r 13051 issubmd 13515 mndissubm 13516 submid 13518 subsubm 13524 0subm 13525 mhmima 13532 mhmeql 13533 issubgrpd2 13735 grpissubg 13739 subgintm 13743 nmzsubg 13755 eqger 13769 eqgcpbl 13773 ghmrn 13802 ghmpreima 13811 unitsubm 14091 subrgsubm 14206 subrgugrp 14212 subrgintm 14215 islssmd 14331 lsssubg 14349 islss4 14354 issubrgd 14424 lidlsubg 14458 2idlcpblrng 14495 mplsubgfi 14673 lmtopcnp 14932 xmeter 15118 tgqioo 15237 suplociccreex 15306 dedekindicc 15315 ivthinclemlopn 15318 ivthinclemuopn 15320 sin0pilem2 15464 pilem3 15465 coseq0q4123 15516 wlkres 16098 |
| Copyright terms: Public domain | W3C validator |