ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbir3and GIF version

Theorem mpbir3and 1180
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.)
Hypotheses
Ref Expression
mpbir3and.1 (𝜑𝜒)
mpbir3and.2 (𝜑𝜃)
mpbir3and.3 (𝜑𝜏)
mpbir3and.4 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
Assertion
Ref Expression
mpbir3and (𝜑𝜓)

Proof of Theorem mpbir3and
StepHypRef Expression
1 mpbir3and.1 . . 3 (𝜑𝜒)
2 mpbir3and.2 . . 3 (𝜑𝜃)
3 mpbir3and.3 . . 3 (𝜑𝜏)
41, 2, 33jca 1177 . 2 (𝜑 → (𝜒𝜃𝜏))
5 mpbir3and.4 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))
64, 5mpbird 167 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  ixxss1  9903  ixxss2  9904  ixxss12  9905  ubioc1  9928  lbico1  9929  lbicc2  9983  ubicc2  9984  elicod  10264  modqelico  10333  zmodfz  10345  modqmuladdim  10366  addmodid  10371  phicl2  12213  isstruct2r  12472  issubmd  12864  mndissubm  12865  submid  12867  0subm  12870  mhmima  12874  mhmeql  12875  issubgrpd2  13048  grpissubg  13052  subgintm  13056  nmzsubg  13068  eqger  13081  eqgcpbl  13085  unitsubm  13286  subrgsubm  13353  subrgugrp  13359  subrgintm  13362  lmtopcnp  13720  xmeter  13906  tgqioo  14017  suplociccreex  14072  dedekindicc  14081  ivthinclemlopn  14084  ivthinclemuopn  14086  sin0pilem2  14173  pilem3  14174  coseq0q4123  14225
  Copyright terms: Public domain W3C validator