Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
Ref | Expression |
---|---|
mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Ref | Expression |
---|---|
mpbir3and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
4 | 1, 2, 3 | 3jca 1172 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
6 | 4, 5 | mpbird 166 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: ixxss1 9861 ixxss2 9862 ixxss12 9863 ubioc1 9886 lbico1 9887 lbicc2 9941 ubicc2 9942 elicod 10221 modqelico 10290 zmodfz 10302 modqmuladdim 10323 addmodid 10328 phicl2 12168 isstruct2r 12427 issubmd 12696 mndissubm 12697 submid 12699 0subm 12702 mhmima 12706 mhmeql 12707 lmtopcnp 13044 xmeter 13230 tgqioo 13341 suplociccreex 13396 dedekindicc 13405 ivthinclemlopn 13408 ivthinclemuopn 13410 sin0pilem2 13497 pilem3 13498 coseq0q4123 13549 |
Copyright terms: Public domain | W3C validator |