![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnsubglem | GIF version |
Description: Lemma for cnsubrglem 13844 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
cnsubglem.4 | ⊢ 𝐵 ∈ 𝐴 |
Ref | Expression |
---|---|
cnsubglem | ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3174 | . 2 ⊢ 𝐴 ⊆ ℂ |
3 | cnsubglem.4 | . . 3 ⊢ 𝐵 ∈ 𝐴 | |
4 | elex2 2768 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∃𝑤 𝑤 ∈ 𝐴) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∃𝑤 𝑤 ∈ 𝐴 |
6 | cnsubglem.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
7 | 6 | ralrimiva 2563 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴) |
8 | cnfldneg 13837 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → ((invg‘ℂfld)‘𝑥) = -𝑥) | |
9 | 1, 8 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) = -𝑥) |
10 | cnsubglem.3 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
11 | 9, 10 | eqeltrd 2266 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
12 | 7, 11 | jca 306 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)) |
13 | 12 | rgen 2543 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
14 | cnring 13834 | . . 3 ⊢ ℂfld ∈ Ring | |
15 | ringgrp 13316 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
16 | cnfldbas 13829 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
17 | cnfldadd 13830 | . . . 4 ⊢ + = (+g‘ℂfld) | |
18 | eqid 2189 | . . . 4 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
19 | 16, 17, 18 | issubg2m 13094 | . . 3 ⊢ (ℂfld ∈ Grp → (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)))) |
20 | 14, 15, 19 | mp2b 8 | . 2 ⊢ (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴))) |
21 | 2, 5, 13, 20 | mpbir3an 1181 | 1 ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 ⊆ wss 3144 ‘cfv 5231 (class class class)co 5891 ℂcc 7827 + caddc 7832 -cneg 8147 Grpcgrp 12911 invgcminusg 12912 SubGrpcsubg 13072 Ringcrg 13311 ℂfldccnfld 13825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-addf 7951 ax-mulf 7952 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-5 8999 df-6 9000 df-7 9001 df-8 9002 df-9 9003 df-n0 9195 df-z 9272 df-dec 9403 df-uz 9547 df-fz 10027 df-cj 10869 df-struct 12482 df-ndx 12483 df-slot 12484 df-base 12486 df-sets 12487 df-iress 12488 df-plusg 12568 df-mulr 12569 df-starv 12570 df-0g 12729 df-mgm 12798 df-sgrp 12831 df-mnd 12844 df-grp 12914 df-minusg 12915 df-subg 13075 df-cmn 13186 df-mgp 13236 df-ring 13313 df-cring 13314 df-icnfld 13826 |
This theorem is referenced by: cnsubrglem 13844 zringmulg 13858 |
Copyright terms: Public domain | W3C validator |