![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnsubglem | GIF version |
Description: Lemma for cnsubrglem 14079 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
cnsubglem.4 | ⊢ 𝐵 ∈ 𝐴 |
Ref | Expression |
---|---|
cnsubglem | ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3184 | . 2 ⊢ 𝐴 ⊆ ℂ |
3 | cnsubglem.4 | . . 3 ⊢ 𝐵 ∈ 𝐴 | |
4 | elex2 2776 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∃𝑤 𝑤 ∈ 𝐴) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∃𝑤 𝑤 ∈ 𝐴 |
6 | cnsubglem.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
7 | 6 | ralrimiva 2567 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴) |
8 | cnfldneg 14072 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → ((invg‘ℂfld)‘𝑥) = -𝑥) | |
9 | 1, 8 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) = -𝑥) |
10 | cnsubglem.3 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
11 | 9, 10 | eqeltrd 2270 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
12 | 7, 11 | jca 306 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)) |
13 | 12 | rgen 2547 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
14 | cnring 14069 | . . 3 ⊢ ℂfld ∈ Ring | |
15 | ringgrp 13500 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
16 | cnfldbas 14059 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
17 | cnfldadd 14061 | . . . 4 ⊢ + = (+g‘ℂfld) | |
18 | eqid 2193 | . . . 4 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
19 | 16, 17, 18 | issubg2m 13262 | . . 3 ⊢ (ℂfld ∈ Grp → (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)))) |
20 | 14, 15, 19 | mp2b 8 | . 2 ⊢ (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴))) |
21 | 2, 5, 13, 20 | mpbir3an 1181 | 1 ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 + caddc 7877 -cneg 8193 Grpcgrp 13075 invgcminusg 13076 SubGrpcsubg 13240 Ringcrg 13495 ℂfldccnfld 14055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-rp 9723 df-fz 10078 df-cj 10989 df-abs 11146 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-starv 12713 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-0g 12872 df-topgen 12874 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-subg 13243 df-cmn 13359 df-mgp 13420 df-ring 13497 df-cring 13498 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 |
This theorem is referenced by: cnsubrglem 14079 zringmulg 14097 |
Copyright terms: Public domain | W3C validator |