ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccmax GIF version

Theorem iccmax 9885
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
iccmax (-∞[,]+∞) = ℝ*

Proof of Theorem iccmax
StepHypRef Expression
1 mnfxr 7955 . . 3 -∞ ∈ ℝ*
2 pnfxr 7951 . . 3 +∞ ∈ ℝ*
3 iccval 9856 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)})
41, 2, 3mp2an 423 . 2 (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)}
5 rabid2 2642 . . 3 (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥𝑥 ≤ +∞))
6 mnfle 9728 . . . 4 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
7 pnfge 9725 . . . 4 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
86, 7jca 304 . . 3 (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥𝑥 ≤ +∞))
95, 8mprgbir 2524 . 2 * = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)}
104, 9eqtr4i 2189 1 (-∞[,]+∞) = ℝ*
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  {crab 2448   class class class wbr 3982  (class class class)co 5842  +∞cpnf 7930  -∞cmnf 7931  *cxr 7932  cle 7934  [,]cicc 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-icc 9831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator