| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccmax | GIF version | ||
| Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| iccmax | ⊢ (-∞[,]+∞) = ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 8191 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 8187 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iccval 10104 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)}) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
| 5 | rabid2 2708 | . . 3 ⊢ (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) | |
| 6 | mnfle 9976 | . . . 4 ⊢ (𝑥 ∈ ℝ* → -∞ ≤ 𝑥) | |
| 7 | pnfge 9973 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ +∞) | |
| 8 | 6, 7 | jca 306 | . . 3 ⊢ (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) |
| 9 | 5, 8 | mprgbir 2588 | . 2 ⊢ ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
| 10 | 4, 9 | eqtr4i 2253 | 1 ⊢ (-∞[,]+∞) = ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4082 (class class class)co 5994 +∞cpnf 8166 -∞cmnf 8167 ℝ*cxr 8168 ≤ cle 8170 [,]cicc 10075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-icc 10079 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |