| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccmax | GIF version | ||
| Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| iccmax | ⊢ (-∞[,]+∞) = ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 8142 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 8138 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iccval 10055 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)}) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
| 5 | rabid2 2684 | . . 3 ⊢ (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) | |
| 6 | mnfle 9927 | . . . 4 ⊢ (𝑥 ∈ ℝ* → -∞ ≤ 𝑥) | |
| 7 | pnfge 9924 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ +∞) | |
| 8 | 6, 7 | jca 306 | . . 3 ⊢ (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) |
| 9 | 5, 8 | mprgbir 2565 | . 2 ⊢ ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
| 10 | 4, 9 | eqtr4i 2230 | 1 ⊢ (-∞[,]+∞) = ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4048 (class class class)co 5954 +∞cpnf 8117 -∞cmnf 8118 ℝ*cxr 8119 ≤ cle 8121 [,]cicc 10026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-icc 10030 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |