ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccmax GIF version

Theorem iccmax 9336
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
iccmax (-∞[,]+∞) = ℝ*

Proof of Theorem iccmax
StepHypRef Expression
1 mnfxr 7523 . . 3 -∞ ∈ ℝ*
2 pnfxr 7519 . . 3 +∞ ∈ ℝ*
3 iccval 9307 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)})
41, 2, 3mp2an 417 . 2 (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)}
5 rabid2 2543 . . 3 (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥𝑥 ≤ +∞))
6 mnfle 9231 . . . 4 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
7 pnfge 9228 . . . 4 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
86, 7jca 300 . . 3 (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥𝑥 ≤ +∞))
95, 8mprgbir 2433 . 2 * = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)}
104, 9eqtr4i 2111 1 (-∞[,]+∞) = ℝ*
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wcel 1438  {crab 2363   class class class wbr 3837  (class class class)co 5634  +∞cpnf 7498  -∞cmnf 7499  *cxr 7500  cle 7502  [,]cicc 9278
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-icc 9282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator