ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioomax GIF version

Theorem ioomax 9364
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax (-∞(,)+∞) = ℝ

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 7542 . . 3 -∞ ∈ ℝ*
2 pnfxr 7538 . . 3 +∞ ∈ ℝ*
3 iooval2 9331 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 417 . 2 (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
5 rabid2 2543 . . 3 (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥𝑥 < +∞))
6 mnflt 9251 . . . 4 (𝑥 ∈ ℝ → -∞ < 𝑥)
7 ltpnf 9249 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
86, 7jca 300 . . 3 (𝑥 ∈ ℝ → (-∞ < 𝑥𝑥 < +∞))
95, 8mprgbir 2433 . 2 ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
104, 9eqtr4i 2111 1 (-∞(,)+∞) = ℝ
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wcel 1438  {crab 2363   class class class wbr 3845  (class class class)co 5652  cr 7347  +∞cpnf 7517  -∞cmnf 7518  *cxr 7519   < clt 7520  (,)cioo 9304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-ioo 9308
This theorem is referenced by:  unirnioo  9389
  Copyright terms: Public domain W3C validator