ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioomax GIF version

Theorem ioomax 9743
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax (-∞(,)+∞) = ℝ

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 7834 . . 3 -∞ ∈ ℝ*
2 pnfxr 7830 . . 3 +∞ ∈ ℝ*
3 iooval2 9710 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 422 . 2 (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
5 rabid2 2607 . . 3 (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥𝑥 < +∞))
6 mnflt 9581 . . . 4 (𝑥 ∈ ℝ → -∞ < 𝑥)
7 ltpnf 9579 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
86, 7jca 304 . . 3 (𝑥 ∈ ℝ → (-∞ < 𝑥𝑥 < +∞))
95, 8mprgbir 2490 . 2 ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
104, 9eqtr4i 2163 1 (-∞(,)+∞) = ℝ
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wcel 1480  {crab 2420   class class class wbr 3929  (class class class)co 5774  cr 7631  +∞cpnf 7809  -∞cmnf 7810  *cxr 7811   < clt 7812  (,)cioo 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-ioo 9687
This theorem is referenced by:  unirnioo  9768  blssioo  12728
  Copyright terms: Public domain W3C validator