| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioomax | GIF version | ||
| Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| ioomax | ⊢ (-∞(,)+∞) = ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 8149 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 8145 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iooval2 10057 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)}) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 5 | rabid2 2684 | . . 3 ⊢ (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥 ∧ 𝑥 < +∞)) | |
| 6 | mnflt 9925 | . . . 4 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
| 7 | ltpnf 9922 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 8 | 6, 7 | jca 306 | . . 3 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 ∧ 𝑥 < +∞)) |
| 9 | 5, 8 | mprgbir 2565 | . 2 ⊢ ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 10 | 4, 9 | eqtr4i 2230 | 1 ⊢ (-∞(,)+∞) = ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4051 (class class class)co 5957 ℝcr 7944 +∞cpnf 8124 -∞cmnf 8125 ℝ*cxr 8126 < clt 8127 (,)cioo 10030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-ioo 10034 |
| This theorem is referenced by: unirnioo 10115 blssioo 15100 |
| Copyright terms: Public domain | W3C validator |