![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfomnilem | GIF version |
Description: Lemma for nninfomni 15222. (Contributed by Jim Kingdon, 10-Aug-2022.) |
Ref | Expression |
---|---|
nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
Ref | Expression |
---|---|
nninfomnilem | ⊢ ℕ∞ ∈ Omni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfex 7149 | . . 3 ⊢ ℕ∞ ∈ V | |
2 | isomnimap 7164 | . . 3 ⊢ (ℕ∞ ∈ V → (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
4 | elmapi 6695 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → 𝑟:ℕ∞⟶2o) | |
5 | nninfsel.e | . . . . . . . 8 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
6 | 5 | nninfself 15216 | . . . . . . 7 ⊢ 𝐸:(2o ↑𝑚 ℕ∞)⟶ℕ∞ |
7 | 6 | ffvelcdmi 5670 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝐸‘𝑟) ∈ ℕ∞) |
8 | 4, 7 | ffvelcdmd 5672 | . . . . 5 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ 2o) |
9 | df2o3 6454 | . . . . 5 ⊢ 2o = {∅, 1o} | |
10 | 8, 9 | eleqtrdi 2282 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o}) |
11 | elpri 3630 | . . . 4 ⊢ ((𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o} → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) |
13 | fveqeq2 5543 | . . . . . . 7 ⊢ (𝑝 = (𝐸‘𝑟) → ((𝑟‘𝑝) = ∅ ↔ (𝑟‘(𝐸‘𝑟)) = ∅)) | |
14 | 13 | rspcev 2856 | . . . . . 6 ⊢ (((𝐸‘𝑟) ∈ ℕ∞ ∧ (𝑟‘(𝐸‘𝑟)) = ∅) → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅) |
15 | 14 | ex 115 | . . . . 5 ⊢ ((𝐸‘𝑟) ∈ ℕ∞ → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
16 | 7, 15 | syl 14 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
17 | simpl 109 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → 𝑟 ∈ (2o ↑𝑚 ℕ∞)) | |
18 | simpr 110 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → (𝑟‘(𝐸‘𝑟)) = 1o) | |
19 | 5, 17, 18 | nninfsel 15220 | . . . . 5 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o) |
20 | 19 | ex 115 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = 1o → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
21 | 16, 20 | orim12d 787 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) |
22 | 12, 21 | mpd 13 | . 2 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
23 | 3, 22 | mprgbir 2548 | 1 ⊢ ℕ∞ ∈ Omni |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 Vcvv 2752 ∅c0 3437 ifcif 3549 {cpr 3608 ↦ cmpt 4079 suc csuc 4383 ωcom 4607 ‘cfv 5235 (class class class)co 5895 1oc1o 6433 2oc2o 6434 ↑𝑚 cmap 6673 ℕ∞xnninf 7147 Omnicomni 7161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1o 6440 df-2o 6441 df-map 6675 df-nninf 7148 df-omni 7162 |
This theorem is referenced by: nninfomni 15222 |
Copyright terms: Public domain | W3C validator |