Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfomnilem | GIF version |
Description: Lemma for nninfomni 13899. (Contributed by Jim Kingdon, 10-Aug-2022.) |
Ref | Expression |
---|---|
nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
Ref | Expression |
---|---|
nninfomnilem | ⊢ ℕ∞ ∈ Omni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfex 7086 | . . 3 ⊢ ℕ∞ ∈ V | |
2 | isomnimap 7101 | . . 3 ⊢ (ℕ∞ ∈ V → (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
4 | elmapi 6636 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → 𝑟:ℕ∞⟶2o) | |
5 | nninfsel.e | . . . . . . . 8 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
6 | 5 | nninfself 13893 | . . . . . . 7 ⊢ 𝐸:(2o ↑𝑚 ℕ∞)⟶ℕ∞ |
7 | 6 | ffvelrni 5619 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝐸‘𝑟) ∈ ℕ∞) |
8 | 4, 7 | ffvelrnd 5621 | . . . . 5 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ 2o) |
9 | df2o3 6398 | . . . . 5 ⊢ 2o = {∅, 1o} | |
10 | 8, 9 | eleqtrdi 2259 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o}) |
11 | elpri 3599 | . . . 4 ⊢ ((𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o} → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) |
13 | fveqeq2 5495 | . . . . . . 7 ⊢ (𝑝 = (𝐸‘𝑟) → ((𝑟‘𝑝) = ∅ ↔ (𝑟‘(𝐸‘𝑟)) = ∅)) | |
14 | 13 | rspcev 2830 | . . . . . 6 ⊢ (((𝐸‘𝑟) ∈ ℕ∞ ∧ (𝑟‘(𝐸‘𝑟)) = ∅) → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅) |
15 | 14 | ex 114 | . . . . 5 ⊢ ((𝐸‘𝑟) ∈ ℕ∞ → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
16 | 7, 15 | syl 14 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
17 | simpl 108 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → 𝑟 ∈ (2o ↑𝑚 ℕ∞)) | |
18 | simpr 109 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → (𝑟‘(𝐸‘𝑟)) = 1o) | |
19 | 5, 17, 18 | nninfsel 13897 | . . . . 5 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o) |
20 | 19 | ex 114 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = 1o → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
21 | 16, 20 | orim12d 776 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) |
22 | 12, 21 | mpd 13 | . 2 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
23 | 3, 22 | mprgbir 2524 | 1 ⊢ ℕ∞ ∈ Omni |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 Vcvv 2726 ∅c0 3409 ifcif 3520 {cpr 3577 ↦ cmpt 4043 suc csuc 4343 ωcom 4567 ‘cfv 5188 (class class class)co 5842 1oc1o 6377 2oc2o 6378 ↑𝑚 cmap 6614 ℕ∞xnninf 7084 Omnicomni 7098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 df-omni 7099 |
This theorem is referenced by: nninfomni 13899 |
Copyright terms: Public domain | W3C validator |