| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfomnilem | GIF version | ||
| Description: Lemma for nninfomni 16316. (Contributed by Jim Kingdon, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
| Ref | Expression |
|---|---|
| nninfomnilem | ⊢ ℕ∞ ∈ Omni |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfex 7276 | . . 3 ⊢ ℕ∞ ∈ V | |
| 2 | isomnimap 7292 | . . 3 ⊢ (ℕ∞ ∈ V → (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
| 4 | elmapi 6807 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → 𝑟:ℕ∞⟶2o) | |
| 5 | nninfsel.e | . . . . . . . 8 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
| 6 | 5 | nninfself 16310 | . . . . . . 7 ⊢ 𝐸:(2o ↑𝑚 ℕ∞)⟶ℕ∞ |
| 7 | 6 | ffvelcdmi 5762 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝐸‘𝑟) ∈ ℕ∞) |
| 8 | 4, 7 | ffvelcdmd 5764 | . . . . 5 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ 2o) |
| 9 | df2o3 6566 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 10 | 8, 9 | eleqtrdi 2322 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o}) |
| 11 | elpri 3689 | . . . 4 ⊢ ((𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o} → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) | |
| 12 | 10, 11 | syl 14 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) |
| 13 | fveqeq2 5632 | . . . . . . 7 ⊢ (𝑝 = (𝐸‘𝑟) → ((𝑟‘𝑝) = ∅ ↔ (𝑟‘(𝐸‘𝑟)) = ∅)) | |
| 14 | 13 | rspcev 2907 | . . . . . 6 ⊢ (((𝐸‘𝑟) ∈ ℕ∞ ∧ (𝑟‘(𝐸‘𝑟)) = ∅) → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅) |
| 15 | 14 | ex 115 | . . . . 5 ⊢ ((𝐸‘𝑟) ∈ ℕ∞ → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
| 16 | 7, 15 | syl 14 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
| 17 | simpl 109 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → 𝑟 ∈ (2o ↑𝑚 ℕ∞)) | |
| 18 | simpr 110 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → (𝑟‘(𝐸‘𝑟)) = 1o) | |
| 19 | 5, 17, 18 | nninfsel 16314 | . . . . 5 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o) |
| 20 | 19 | ex 115 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = 1o → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
| 21 | 16, 20 | orim12d 791 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) |
| 22 | 12, 21 | mpd 13 | . 2 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
| 23 | 3, 22 | mprgbir 2588 | 1 ⊢ ℕ∞ ∈ Omni |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ∅c0 3491 ifcif 3602 {cpr 3667 ↦ cmpt 4144 suc csuc 4453 ωcom 4679 ‘cfv 5314 (class class class)co 5994 1oc1o 6545 2oc2o 6546 ↑𝑚 cmap 6785 ℕ∞xnninf 7274 Omnicomni 7289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1o 6552 df-2o 6553 df-map 6787 df-nninf 7275 df-omni 7290 |
| This theorem is referenced by: nninfomni 16316 |
| Copyright terms: Public domain | W3C validator |