Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomnilem GIF version

Theorem nninfomnilem 14051
Description: Lemma for nninfomni 14052. (Contributed by Jim Kingdon, 10-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
Assertion
Ref Expression
nninfomnilem ∈ Omni
Distinct variable groups:   𝑖,𝐸,𝑘,𝑛   𝑖,𝑞,𝑘,𝑛
Allowed substitution hint:   𝐸(𝑞)

Proof of Theorem nninfomnilem
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfex 7098 . . 3 ∈ V
2 isomnimap 7113 . . 3 (ℕ ∈ V → (ℕ ∈ Omni ↔ ∀𝑟 ∈ (2o𝑚)(∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o)))
31, 2ax-mp 5 . 2 (ℕ ∈ Omni ↔ ∀𝑟 ∈ (2o𝑚)(∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o))
4 elmapi 6648 . . . . . 6 (𝑟 ∈ (2o𝑚) → 𝑟:ℕ⟶2o)
5 nninfsel.e . . . . . . . 8 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
65nninfself 14046 . . . . . . 7 𝐸:(2o𝑚)⟶ℕ
76ffvelrni 5630 . . . . . 6 (𝑟 ∈ (2o𝑚) → (𝐸𝑟) ∈ ℕ)
84, 7ffvelrnd 5632 . . . . 5 (𝑟 ∈ (2o𝑚) → (𝑟‘(𝐸𝑟)) ∈ 2o)
9 df2o3 6409 . . . . 5 2o = {∅, 1o}
108, 9eleqtrdi 2263 . . . 4 (𝑟 ∈ (2o𝑚) → (𝑟‘(𝐸𝑟)) ∈ {∅, 1o})
11 elpri 3606 . . . 4 ((𝑟‘(𝐸𝑟)) ∈ {∅, 1o} → ((𝑟‘(𝐸𝑟)) = ∅ ∨ (𝑟‘(𝐸𝑟)) = 1o))
1210, 11syl 14 . . 3 (𝑟 ∈ (2o𝑚) → ((𝑟‘(𝐸𝑟)) = ∅ ∨ (𝑟‘(𝐸𝑟)) = 1o))
13 fveqeq2 5505 . . . . . . 7 (𝑝 = (𝐸𝑟) → ((𝑟𝑝) = ∅ ↔ (𝑟‘(𝐸𝑟)) = ∅))
1413rspcev 2834 . . . . . 6 (((𝐸𝑟) ∈ ℕ ∧ (𝑟‘(𝐸𝑟)) = ∅) → ∃𝑝 ∈ ℕ (𝑟𝑝) = ∅)
1514ex 114 . . . . 5 ((𝐸𝑟) ∈ ℕ → ((𝑟‘(𝐸𝑟)) = ∅ → ∃𝑝 ∈ ℕ (𝑟𝑝) = ∅))
167, 15syl 14 . . . 4 (𝑟 ∈ (2o𝑚) → ((𝑟‘(𝐸𝑟)) = ∅ → ∃𝑝 ∈ ℕ (𝑟𝑝) = ∅))
17 simpl 108 . . . . . 6 ((𝑟 ∈ (2o𝑚) ∧ (𝑟‘(𝐸𝑟)) = 1o) → 𝑟 ∈ (2o𝑚))
18 simpr 109 . . . . . 6 ((𝑟 ∈ (2o𝑚) ∧ (𝑟‘(𝐸𝑟)) = 1o) → (𝑟‘(𝐸𝑟)) = 1o)
195, 17, 18nninfsel 14050 . . . . 5 ((𝑟 ∈ (2o𝑚) ∧ (𝑟‘(𝐸𝑟)) = 1o) → ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o)
2019ex 114 . . . 4 (𝑟 ∈ (2o𝑚) → ((𝑟‘(𝐸𝑟)) = 1o → ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o))
2116, 20orim12d 781 . . 3 (𝑟 ∈ (2o𝑚) → (((𝑟‘(𝐸𝑟)) = ∅ ∨ (𝑟‘(𝐸𝑟)) = 1o) → (∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o)))
2212, 21mpd 13 . 2 (𝑟 ∈ (2o𝑚) → (∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o))
233, 22mprgbir 2528 1 ∈ Omni
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  c0 3414  ifcif 3526  {cpr 3584  cmpt 4050  suc csuc 4350  ωcom 4574  cfv 5198  (class class class)co 5853  1oc1o 6388  2oc2o 6389  𝑚 cmap 6626  xnninf 7096  Omnicomni 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-nninf 7097  df-omni 7111
This theorem is referenced by:  nninfomni  14052
  Copyright terms: Public domain W3C validator