Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomnilem GIF version

Theorem nninfomnilem 16315
Description: Lemma for nninfomni 16316. (Contributed by Jim Kingdon, 10-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
Assertion
Ref Expression
nninfomnilem ∈ Omni
Distinct variable groups:   𝑖,𝐸,𝑘,𝑛   𝑖,𝑞,𝑘,𝑛
Allowed substitution hint:   𝐸(𝑞)

Proof of Theorem nninfomnilem
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfex 7276 . . 3 ∈ V
2 isomnimap 7292 . . 3 (ℕ ∈ V → (ℕ ∈ Omni ↔ ∀𝑟 ∈ (2o𝑚)(∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o)))
31, 2ax-mp 5 . 2 (ℕ ∈ Omni ↔ ∀𝑟 ∈ (2o𝑚)(∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o))
4 elmapi 6807 . . . . . 6 (𝑟 ∈ (2o𝑚) → 𝑟:ℕ⟶2o)
5 nninfsel.e . . . . . . . 8 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
65nninfself 16310 . . . . . . 7 𝐸:(2o𝑚)⟶ℕ
76ffvelcdmi 5762 . . . . . 6 (𝑟 ∈ (2o𝑚) → (𝐸𝑟) ∈ ℕ)
84, 7ffvelcdmd 5764 . . . . 5 (𝑟 ∈ (2o𝑚) → (𝑟‘(𝐸𝑟)) ∈ 2o)
9 df2o3 6566 . . . . 5 2o = {∅, 1o}
108, 9eleqtrdi 2322 . . . 4 (𝑟 ∈ (2o𝑚) → (𝑟‘(𝐸𝑟)) ∈ {∅, 1o})
11 elpri 3689 . . . 4 ((𝑟‘(𝐸𝑟)) ∈ {∅, 1o} → ((𝑟‘(𝐸𝑟)) = ∅ ∨ (𝑟‘(𝐸𝑟)) = 1o))
1210, 11syl 14 . . 3 (𝑟 ∈ (2o𝑚) → ((𝑟‘(𝐸𝑟)) = ∅ ∨ (𝑟‘(𝐸𝑟)) = 1o))
13 fveqeq2 5632 . . . . . . 7 (𝑝 = (𝐸𝑟) → ((𝑟𝑝) = ∅ ↔ (𝑟‘(𝐸𝑟)) = ∅))
1413rspcev 2907 . . . . . 6 (((𝐸𝑟) ∈ ℕ ∧ (𝑟‘(𝐸𝑟)) = ∅) → ∃𝑝 ∈ ℕ (𝑟𝑝) = ∅)
1514ex 115 . . . . 5 ((𝐸𝑟) ∈ ℕ → ((𝑟‘(𝐸𝑟)) = ∅ → ∃𝑝 ∈ ℕ (𝑟𝑝) = ∅))
167, 15syl 14 . . . 4 (𝑟 ∈ (2o𝑚) → ((𝑟‘(𝐸𝑟)) = ∅ → ∃𝑝 ∈ ℕ (𝑟𝑝) = ∅))
17 simpl 109 . . . . . 6 ((𝑟 ∈ (2o𝑚) ∧ (𝑟‘(𝐸𝑟)) = 1o) → 𝑟 ∈ (2o𝑚))
18 simpr 110 . . . . . 6 ((𝑟 ∈ (2o𝑚) ∧ (𝑟‘(𝐸𝑟)) = 1o) → (𝑟‘(𝐸𝑟)) = 1o)
195, 17, 18nninfsel 16314 . . . . 5 ((𝑟 ∈ (2o𝑚) ∧ (𝑟‘(𝐸𝑟)) = 1o) → ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o)
2019ex 115 . . . 4 (𝑟 ∈ (2o𝑚) → ((𝑟‘(𝐸𝑟)) = 1o → ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o))
2116, 20orim12d 791 . . 3 (𝑟 ∈ (2o𝑚) → (((𝑟‘(𝐸𝑟)) = ∅ ∨ (𝑟‘(𝐸𝑟)) = 1o) → (∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o)))
2212, 21mpd 13 . 2 (𝑟 ∈ (2o𝑚) → (∃𝑝 ∈ ℕ (𝑟𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ (𝑟𝑝) = 1o))
233, 22mprgbir 2588 1 ∈ Omni
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  c0 3491  ifcif 3602  {cpr 3667  cmpt 4144  suc csuc 4453  ωcom 4679  cfv 5314  (class class class)co 5994  1oc1o 6545  2oc2o 6546  𝑚 cmap 6785  xnninf 7274  Omnicomni 7289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1o 6552  df-2o 6553  df-map 6787  df-nninf 7275  df-omni 7290
This theorem is referenced by:  nninfomni  16316
  Copyright terms: Public domain W3C validator