Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfomnilem | GIF version |
Description: Lemma for nninfomni 14052. (Contributed by Jim Kingdon, 10-Aug-2022.) |
Ref | Expression |
---|---|
nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
Ref | Expression |
---|---|
nninfomnilem | ⊢ ℕ∞ ∈ Omni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfex 7098 | . . 3 ⊢ ℕ∞ ∈ V | |
2 | isomnimap 7113 | . . 3 ⊢ (ℕ∞ ∈ V → (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
4 | elmapi 6648 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → 𝑟:ℕ∞⟶2o) | |
5 | nninfsel.e | . . . . . . . 8 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
6 | 5 | nninfself 14046 | . . . . . . 7 ⊢ 𝐸:(2o ↑𝑚 ℕ∞)⟶ℕ∞ |
7 | 6 | ffvelrni 5630 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝐸‘𝑟) ∈ ℕ∞) |
8 | 4, 7 | ffvelrnd 5632 | . . . . 5 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ 2o) |
9 | df2o3 6409 | . . . . 5 ⊢ 2o = {∅, 1o} | |
10 | 8, 9 | eleqtrdi 2263 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o}) |
11 | elpri 3606 | . . . 4 ⊢ ((𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o} → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) |
13 | fveqeq2 5505 | . . . . . . 7 ⊢ (𝑝 = (𝐸‘𝑟) → ((𝑟‘𝑝) = ∅ ↔ (𝑟‘(𝐸‘𝑟)) = ∅)) | |
14 | 13 | rspcev 2834 | . . . . . 6 ⊢ (((𝐸‘𝑟) ∈ ℕ∞ ∧ (𝑟‘(𝐸‘𝑟)) = ∅) → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅) |
15 | 14 | ex 114 | . . . . 5 ⊢ ((𝐸‘𝑟) ∈ ℕ∞ → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
16 | 7, 15 | syl 14 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
17 | simpl 108 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → 𝑟 ∈ (2o ↑𝑚 ℕ∞)) | |
18 | simpr 109 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → (𝑟‘(𝐸‘𝑟)) = 1o) | |
19 | 5, 17, 18 | nninfsel 14050 | . . . . 5 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o) |
20 | 19 | ex 114 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = 1o → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
21 | 16, 20 | orim12d 781 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) |
22 | 12, 21 | mpd 13 | . 2 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
23 | 3, 22 | mprgbir 2528 | 1 ⊢ ℕ∞ ∈ Omni |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 Vcvv 2730 ∅c0 3414 ifcif 3526 {cpr 3584 ↦ cmpt 4050 suc csuc 4350 ωcom 4574 ‘cfv 5198 (class class class)co 5853 1oc1o 6388 2oc2o 6389 ↑𝑚 cmap 6626 ℕ∞xnninf 7096 Omnicomni 7110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1o 6395 df-2o 6396 df-map 6628 df-nninf 7097 df-omni 7111 |
This theorem is referenced by: nninfomni 14052 |
Copyright terms: Public domain | W3C validator |