Step | Hyp | Ref
| Expression |
1 | | nninfex 7120 |
. . 3
β’
ββ β V |
2 | | isomnimap 7135 |
. . 3
β’
(ββ β V β (ββ
β Omni β βπ β (2o
βπ ββ)(βπ β
ββ (πβπ) = β
β¨ βπ β ββ (πβπ) = 1o))) |
3 | 1, 2 | ax-mp 5 |
. 2
β’
(ββ β Omni β βπ β (2o
βπ ββ)(βπ β
ββ (πβπ) = β
β¨ βπ β ββ (πβπ) = 1o)) |
4 | | elmapi 6670 |
. . . . . 6
β’ (π β (2o
βπ ββ) β π:βββΆ2o) |
5 | | nninfsel.e |
. . . . . . . 8
β’ πΈ = (π β (2o
βπ ββ) β¦ (π β Ο β¦
if(βπ β suc
π(πβ(π β Ο β¦ if(π β π, 1o, β
))) = 1o,
1o, β
))) |
6 | 5 | nninfself 14765 |
. . . . . . 7
β’ πΈ:(2o
βπ
ββ)βΆββ |
7 | 6 | ffvelcdmi 5651 |
. . . . . 6
β’ (π β (2o
βπ ββ) β (πΈβπ) β
ββ) |
8 | 4, 7 | ffvelcdmd 5653 |
. . . . 5
β’ (π β (2o
βπ ββ) β (πβ(πΈβπ)) β 2o) |
9 | | df2o3 6431 |
. . . . 5
β’
2o = {β
, 1o} |
10 | 8, 9 | eleqtrdi 2270 |
. . . 4
β’ (π β (2o
βπ ββ) β (πβ(πΈβπ)) β {β
,
1o}) |
11 | | elpri 3616 |
. . . 4
β’ ((πβ(πΈβπ)) β {β
, 1o} β
((πβ(πΈβπ)) = β
β¨ (πβ(πΈβπ)) = 1o)) |
12 | 10, 11 | syl 14 |
. . 3
β’ (π β (2o
βπ ββ) β ((πβ(πΈβπ)) = β
β¨ (πβ(πΈβπ)) = 1o)) |
13 | | fveqeq2 5525 |
. . . . . . 7
β’ (π = (πΈβπ) β ((πβπ) = β
β (πβ(πΈβπ)) = β
)) |
14 | 13 | rspcev 2842 |
. . . . . 6
β’ (((πΈβπ) β ββ β§
(πβ(πΈβπ)) = β
) β βπ β
ββ (πβπ) = β
) |
15 | 14 | ex 115 |
. . . . 5
β’ ((πΈβπ) β ββ β
((πβ(πΈβπ)) = β
β βπ β ββ (πβπ) = β
)) |
16 | 7, 15 | syl 14 |
. . . 4
β’ (π β (2o
βπ ββ) β ((πβ(πΈβπ)) = β
β βπ β ββ (πβπ) = β
)) |
17 | | simpl 109 |
. . . . . 6
β’ ((π β (2o
βπ ββ) β§ (πβ(πΈβπ)) = 1o) β π β (2o
βπ ββ)) |
18 | | simpr 110 |
. . . . . 6
β’ ((π β (2o
βπ ββ) β§ (πβ(πΈβπ)) = 1o) β (πβ(πΈβπ)) = 1o) |
19 | 5, 17, 18 | nninfsel 14769 |
. . . . 5
β’ ((π β (2o
βπ ββ) β§ (πβ(πΈβπ)) = 1o) β βπ β
ββ (πβπ) = 1o) |
20 | 19 | ex 115 |
. . . 4
β’ (π β (2o
βπ ββ) β ((πβ(πΈβπ)) = 1o β βπ β
ββ (πβπ) = 1o)) |
21 | 16, 20 | orim12d 786 |
. . 3
β’ (π β (2o
βπ ββ) β (((πβ(πΈβπ)) = β
β¨ (πβ(πΈβπ)) = 1o) β (βπ β
ββ (πβπ) = β
β¨ βπ β ββ (πβπ) = 1o))) |
22 | 12, 21 | mpd 13 |
. 2
β’ (π β (2o
βπ ββ) β (βπ β
ββ (πβπ) = β
β¨ βπ β ββ (πβπ) = 1o)) |
23 | 3, 22 | mprgbir 2535 |
1
β’
ββ β Omni |