![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfomnilem | GIF version |
Description: Lemma for nninfomni 15509. (Contributed by Jim Kingdon, 10-Aug-2022.) |
Ref | Expression |
---|---|
nninfsel.e | ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) |
Ref | Expression |
---|---|
nninfomnilem | ⊢ ℕ∞ ∈ Omni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfex 7180 | . . 3 ⊢ ℕ∞ ∈ V | |
2 | isomnimap 7196 | . . 3 ⊢ (ℕ∞ ∈ V → (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℕ∞ ∈ Omni ↔ ∀𝑟 ∈ (2o ↑𝑚 ℕ∞)(∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
4 | elmapi 6724 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → 𝑟:ℕ∞⟶2o) | |
5 | nninfsel.e | . . . . . . . 8 ⊢ 𝐸 = (𝑞 ∈ (2o ↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅))) | |
6 | 5 | nninfself 15503 | . . . . . . 7 ⊢ 𝐸:(2o ↑𝑚 ℕ∞)⟶ℕ∞ |
7 | 6 | ffvelcdmi 5692 | . . . . . 6 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝐸‘𝑟) ∈ ℕ∞) |
8 | 4, 7 | ffvelcdmd 5694 | . . . . 5 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ 2o) |
9 | df2o3 6483 | . . . . 5 ⊢ 2o = {∅, 1o} | |
10 | 8, 9 | eleqtrdi 2286 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o}) |
11 | elpri 3641 | . . . 4 ⊢ ((𝑟‘(𝐸‘𝑟)) ∈ {∅, 1o} → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o)) |
13 | fveqeq2 5563 | . . . . . . 7 ⊢ (𝑝 = (𝐸‘𝑟) → ((𝑟‘𝑝) = ∅ ↔ (𝑟‘(𝐸‘𝑟)) = ∅)) | |
14 | 13 | rspcev 2864 | . . . . . 6 ⊢ (((𝐸‘𝑟) ∈ ℕ∞ ∧ (𝑟‘(𝐸‘𝑟)) = ∅) → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅) |
15 | 14 | ex 115 | . . . . 5 ⊢ ((𝐸‘𝑟) ∈ ℕ∞ → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
16 | 7, 15 | syl 14 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = ∅ → ∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅)) |
17 | simpl 109 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → 𝑟 ∈ (2o ↑𝑚 ℕ∞)) | |
18 | simpr 110 | . . . . . 6 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → (𝑟‘(𝐸‘𝑟)) = 1o) | |
19 | 5, 17, 18 | nninfsel 15507 | . . . . 5 ⊢ ((𝑟 ∈ (2o ↑𝑚 ℕ∞) ∧ (𝑟‘(𝐸‘𝑟)) = 1o) → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o) |
20 | 19 | ex 115 | . . . 4 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → ((𝑟‘(𝐸‘𝑟)) = 1o → ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
21 | 16, 20 | orim12d 787 | . . 3 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (((𝑟‘(𝐸‘𝑟)) = ∅ ∨ (𝑟‘(𝐸‘𝑟)) = 1o) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o))) |
22 | 12, 21 | mpd 13 | . 2 ⊢ (𝑟 ∈ (2o ↑𝑚 ℕ∞) → (∃𝑝 ∈ ℕ∞ (𝑟‘𝑝) = ∅ ∨ ∀𝑝 ∈ ℕ∞ (𝑟‘𝑝) = 1o)) |
23 | 3, 22 | mprgbir 2552 | 1 ⊢ ℕ∞ ∈ Omni |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ∅c0 3446 ifcif 3557 {cpr 3619 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 ‘cfv 5254 (class class class)co 5918 1oc1o 6462 2oc2o 6463 ↑𝑚 cmap 6702 ℕ∞xnninf 7178 Omnicomni 7193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1o 6469 df-2o 6470 df-map 6704 df-nninf 7179 df-omni 7194 |
This theorem is referenced by: nninfomni 15509 |
Copyright terms: Public domain | W3C validator |