![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oacl | GIF version |
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.) |
Ref | Expression |
---|---|
oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oav 6509 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵)) | |
2 | id 19 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ On) | |
3 | vex 2763 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
4 | suceq 4434 | . . . . . . . . 9 ⊢ (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤) | |
5 | eqid 2193 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ suc 𝑧) = (𝑧 ∈ V ↦ suc 𝑧) | |
6 | 3 | sucex 4532 | . . . . . . . . 9 ⊢ suc 𝑤 ∈ V |
7 | 4, 5, 6 | fvmpt 5635 | . . . . . . . 8 ⊢ (𝑤 ∈ V → ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤) |
8 | 3, 7 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤 |
9 | 8 | eleq1i 2259 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ suc 𝑤 ∈ On) |
10 | 9 | ralbii 2500 | . . . . 5 ⊢ (∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ ∀𝑤 ∈ On suc 𝑤 ∈ On) |
11 | onsuc 4534 | . . . . 5 ⊢ (𝑤 ∈ On → suc 𝑤 ∈ On) | |
12 | 10, 11 | mprgbir 2552 | . . . 4 ⊢ ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On |
13 | 12 | a1i 9 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On) |
14 | 2, 13 | rdgon 6441 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵) ∈ On) |
15 | 1, 14 | eqeltrd 2270 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ↦ cmpt 4091 Oncon0 4395 suc csuc 4397 ‘cfv 5255 (class class class)co 5919 reccrdg 6424 +o coa 6468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-irdg 6425 df-oadd 6475 |
This theorem is referenced by: omcl 6516 omv2 6520 |
Copyright terms: Public domain | W3C validator |