| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oacl | GIF version | ||
| Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.) |
| Ref | Expression |
|---|---|
| oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oav 6563 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵)) | |
| 2 | id 19 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ On) | |
| 3 | vex 2779 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
| 4 | suceq 4467 | . . . . . . . . 9 ⊢ (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤) | |
| 5 | eqid 2207 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ suc 𝑧) = (𝑧 ∈ V ↦ suc 𝑧) | |
| 6 | 3 | sucex 4565 | . . . . . . . . 9 ⊢ suc 𝑤 ∈ V |
| 7 | 4, 5, 6 | fvmpt 5679 | . . . . . . . 8 ⊢ (𝑤 ∈ V → ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤) |
| 8 | 3, 7 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤 |
| 9 | 8 | eleq1i 2273 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ suc 𝑤 ∈ On) |
| 10 | 9 | ralbii 2514 | . . . . 5 ⊢ (∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ ∀𝑤 ∈ On suc 𝑤 ∈ On) |
| 11 | onsuc 4567 | . . . . 5 ⊢ (𝑤 ∈ On → suc 𝑤 ∈ On) | |
| 12 | 10, 11 | mprgbir 2566 | . . . 4 ⊢ ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On |
| 13 | 12 | a1i 9 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On) |
| 14 | 2, 13 | rdgon 6495 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵) ∈ On) |
| 15 | 1, 14 | eqeltrd 2284 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∀wral 2486 Vcvv 2776 ↦ cmpt 4121 Oncon0 4428 suc csuc 4430 ‘cfv 5290 (class class class)co 5967 reccrdg 6478 +o coa 6522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-irdg 6479 df-oadd 6529 |
| This theorem is referenced by: omcl 6570 omv2 6574 |
| Copyright terms: Public domain | W3C validator |