![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oacl | GIF version |
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.) |
Ref | Expression |
---|---|
oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oav 6457 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵)) | |
2 | id 19 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ On) | |
3 | vex 2742 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
4 | suceq 4404 | . . . . . . . . 9 ⊢ (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤) | |
5 | eqid 2177 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ suc 𝑧) = (𝑧 ∈ V ↦ suc 𝑧) | |
6 | 3 | sucex 4500 | . . . . . . . . 9 ⊢ suc 𝑤 ∈ V |
7 | 4, 5, 6 | fvmpt 5595 | . . . . . . . 8 ⊢ (𝑤 ∈ V → ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤) |
8 | 3, 7 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤 |
9 | 8 | eleq1i 2243 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ suc 𝑤 ∈ On) |
10 | 9 | ralbii 2483 | . . . . 5 ⊢ (∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ ∀𝑤 ∈ On suc 𝑤 ∈ On) |
11 | onsuc 4502 | . . . . 5 ⊢ (𝑤 ∈ On → suc 𝑤 ∈ On) | |
12 | 10, 11 | mprgbir 2535 | . . . 4 ⊢ ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On |
13 | 12 | a1i 9 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On) |
14 | 2, 13 | rdgon 6389 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵) ∈ On) |
15 | 1, 14 | eqeltrd 2254 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ↦ cmpt 4066 Oncon0 4365 suc csuc 4367 ‘cfv 5218 (class class class)co 5877 reccrdg 6372 +o coa 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-recs 6308 df-irdg 6373 df-oadd 6423 |
This theorem is referenced by: omcl 6464 omv2 6468 |
Copyright terms: Public domain | W3C validator |