| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oacl | GIF version | ||
| Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.) |
| Ref | Expression |
|---|---|
| oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oav 6530 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵)) | |
| 2 | id 19 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ On) | |
| 3 | vex 2774 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
| 4 | suceq 4447 | . . . . . . . . 9 ⊢ (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤) | |
| 5 | eqid 2204 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ suc 𝑧) = (𝑧 ∈ V ↦ suc 𝑧) | |
| 6 | 3 | sucex 4545 | . . . . . . . . 9 ⊢ suc 𝑤 ∈ V |
| 7 | 4, 5, 6 | fvmpt 5650 | . . . . . . . 8 ⊢ (𝑤 ∈ V → ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤) |
| 8 | 3, 7 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤 |
| 9 | 8 | eleq1i 2270 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ suc 𝑤 ∈ On) |
| 10 | 9 | ralbii 2511 | . . . . 5 ⊢ (∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ ∀𝑤 ∈ On suc 𝑤 ∈ On) |
| 11 | onsuc 4547 | . . . . 5 ⊢ (𝑤 ∈ On → suc 𝑤 ∈ On) | |
| 12 | 10, 11 | mprgbir 2563 | . . . 4 ⊢ ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On |
| 13 | 12 | a1i 9 | . . 3 ⊢ (𝐴 ∈ On → ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On) |
| 14 | 2, 13 | rdgon 6462 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵) ∈ On) |
| 15 | 1, 14 | eqeltrd 2281 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∀wral 2483 Vcvv 2771 ↦ cmpt 4104 Oncon0 4408 suc csuc 4410 ‘cfv 5268 (class class class)co 5934 reccrdg 6445 +o coa 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-recs 6381 df-irdg 6446 df-oadd 6496 |
| This theorem is referenced by: omcl 6537 omv2 6541 |
| Copyright terms: Public domain | W3C validator |