ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oacl GIF version

Theorem oacl 6463
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
oacl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)

Proof of Theorem oacl
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oav 6457 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵))
2 id 19 . . 3 (𝐴 ∈ On → 𝐴 ∈ On)
3 vex 2742 . . . . . . . 8 𝑤 ∈ V
4 suceq 4404 . . . . . . . . 9 (𝑧 = 𝑤 → suc 𝑧 = suc 𝑤)
5 eqid 2177 . . . . . . . . 9 (𝑧 ∈ V ↦ suc 𝑧) = (𝑧 ∈ V ↦ suc 𝑧)
63sucex 4500 . . . . . . . . 9 suc 𝑤 ∈ V
74, 5, 6fvmpt 5595 . . . . . . . 8 (𝑤 ∈ V → ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤)
83, 7ax-mp 5 . . . . . . 7 ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) = suc 𝑤
98eleq1i 2243 . . . . . 6 (((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ suc 𝑤 ∈ On)
109ralbii 2483 . . . . 5 (∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On ↔ ∀𝑤 ∈ On suc 𝑤 ∈ On)
11 onsuc 4502 . . . . 5 (𝑤 ∈ On → suc 𝑤 ∈ On)
1210, 11mprgbir 2535 . . . 4 𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On
1312a1i 9 . . 3 (𝐴 ∈ On → ∀𝑤 ∈ On ((𝑧 ∈ V ↦ suc 𝑧)‘𝑤) ∈ On)
142, 13rdgon 6389 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝐴)‘𝐵) ∈ On)
151, 14eqeltrd 2254 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2739  cmpt 4066  Oncon0 4365  suc csuc 4367  cfv 5218  (class class class)co 5877  reccrdg 6372   +o coa 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-recs 6308  df-irdg 6373  df-oadd 6423
This theorem is referenced by:  omcl  6464  omv2  6468
  Copyright terms: Public domain W3C validator