![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > absmul | GIF version |
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
absmul | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjmul 10929 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | |
2 | 1 | oveq2d 5913 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵)))) |
3 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
4 | simpr 110 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
5 | 3 | cjcld 10984 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐴) ∈ ℂ) |
6 | 4 | cjcld 10984 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ) |
7 | 3, 4, 5, 6 | mul4d 8143 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) |
8 | 2, 7 | eqtrd 2222 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) |
9 | 8 | fveq2d 5538 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))) |
10 | cjmulrcl 10931 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | |
11 | cjmulge0 10933 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴))) | |
12 | 10, 11 | jca 306 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴)))) |
13 | cjmulrcl 10931 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) ∈ ℝ) | |
14 | cjmulge0 10933 | . . . . 5 ⊢ (𝐵 ∈ ℂ → 0 ≤ (𝐵 · (∗‘𝐵))) | |
15 | 13, 14 | jca 306 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵)))) |
16 | sqrtmul 11079 | . . . 4 ⊢ ((((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))) ∧ ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵)))) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵))))) | |
17 | 12, 15, 16 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵))))) |
18 | 9, 17 | eqtrd 2222 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵))))) |
19 | mulcl 7969 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
20 | absval 11045 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ ℂ → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))))) | |
21 | 19, 20 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))))) |
22 | absval 11045 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
23 | absval 11045 | . . 3 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(𝐵 · (∗‘𝐵)))) | |
24 | 22, 23 | oveqan12d 5916 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵))))) |
25 | 18, 21, 24 | 3eqtr4d 2232 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5897 ℂcc 7840 ℝcr 7841 0cc0 7842 · cmul 7847 ≤ cle 8024 ∗ccj 10883 √csqrt 11040 abscabs 11041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-rp 9686 df-seqfrec 10479 df-exp 10554 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 |
This theorem is referenced by: absdivap 11114 absexp 11123 absimle 11128 abstri 11148 absmuli 11195 absmuld 11238 ef01bndlem 11799 absmulgcd 12053 gcdmultiplez 12057 lgslem3 14881 mul2sq 14941 |
Copyright terms: Public domain | W3C validator |