ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absmul GIF version

Theorem absmul 11213
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))

Proof of Theorem absmul
StepHypRef Expression
1 cjmul 11029 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
21oveq2d 5934 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))))
3 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
53cjcld 11084 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐴) ∈ ℂ)
64cjcld 11084 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
73, 4, 5, 6mul4d 8174 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
82, 7eqtrd 2226 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
98fveq2d 5558 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))))
10 cjmulrcl 11031 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
11 cjmulge0 11033 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
1210, 11jca 306 . . . 4 (𝐴 ∈ ℂ → ((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))))
13 cjmulrcl 11031 . . . . 5 (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) ∈ ℝ)
14 cjmulge0 11033 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (𝐵 · (∗‘𝐵)))
1513, 14jca 306 . . . 4 (𝐵 ∈ ℂ → ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵))))
16 sqrtmul 11179 . . . 4 ((((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))) ∧ ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵)))) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
1712, 15, 16syl2an 289 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
189, 17eqtrd 2226 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
19 mulcl 7999 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
20 absval 11145 . . 3 ((𝐴 · 𝐵) ∈ ℂ → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
2119, 20syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
22 absval 11145 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
23 absval 11145 . . 3 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(𝐵 · (∗‘𝐵))))
2422, 23oveqan12d 5937 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
2518, 21, 243eqtr4d 2236 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872   · cmul 7877  cle 8055  ccj 10983  csqrt 11140  abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  absdivap  11214  absexp  11223  absimle  11228  abstri  11248  absmuli  11295  absmuld  11338  ef01bndlem  11899  absmulgcd  12154  gcdmultiplez  12158  lgslem3  15118  mul2sq  15203
  Copyright terms: Public domain W3C validator