ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absmul GIF version

Theorem absmul 11113
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))

Proof of Theorem absmul
StepHypRef Expression
1 cjmul 10929 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
21oveq2d 5913 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))))
3 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
53cjcld 10984 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐴) ∈ ℂ)
64cjcld 10984 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
73, 4, 5, 6mul4d 8143 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
82, 7eqtrd 2222 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
98fveq2d 5538 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))))
10 cjmulrcl 10931 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
11 cjmulge0 10933 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
1210, 11jca 306 . . . 4 (𝐴 ∈ ℂ → ((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))))
13 cjmulrcl 10931 . . . . 5 (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) ∈ ℝ)
14 cjmulge0 10933 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (𝐵 · (∗‘𝐵)))
1513, 14jca 306 . . . 4 (𝐵 ∈ ℂ → ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵))))
16 sqrtmul 11079 . . . 4 ((((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))) ∧ ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵)))) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
1712, 15, 16syl2an 289 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
189, 17eqtrd 2222 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
19 mulcl 7969 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
20 absval 11045 . . 3 ((𝐴 · 𝐵) ∈ ℂ → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
2119, 20syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
22 absval 11045 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
23 absval 11045 . . 3 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(𝐵 · (∗‘𝐵))))
2422, 23oveqan12d 5916 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
2518, 21, 243eqtr4d 2232 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  cr 7841  0cc0 7842   · cmul 7847  cle 8024  ccj 10883  csqrt 11040  abscabs 11041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-rp 9686  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043
This theorem is referenced by:  absdivap  11114  absexp  11123  absimle  11128  abstri  11148  absmuli  11195  absmuld  11238  ef01bndlem  11799  absmulgcd  12053  gcdmultiplez  12057  lgslem3  14881  mul2sq  14941
  Copyright terms: Public domain W3C validator