ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remullem GIF version

Theorem remullem 10655
Description: Lemma for remul 10656, immul 10663, and cjmul 10669. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))

Proof of Theorem remullem
StepHypRef Expression
1 replim 10643 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2 replim 10643 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
31, 2oveqan12d 5793 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
4 recl 10637 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54adantr 274 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65recnd 7806 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
7 ax-icn 7727 . . . . . . . 8 i ∈ ℂ
8 imcl 10638 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
109recnd 7806 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
11 mulcl 7759 . . . . . . . 8 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
127, 10, 11sylancr 410 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
136, 12addcld 7797 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
14 recl 10637 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1514adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1615recnd 7806 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
17 imcl 10638 . . . . . . . . 9 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1817adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1918recnd 7806 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
20 mulcl 7759 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
217, 19, 20sylancr 410 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2213, 16, 21adddid 7802 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))))
236, 12, 16adddird 7803 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
246, 12, 21adddird 7803 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
2523, 24oveq12d 5792 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
265, 15remulcld 7808 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
2726recnd 7806 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2812, 21mulcld 7798 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) ∈ ℂ)
2912, 16mulcld 7798 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) ∈ ℂ)
306, 21mulcld 7798 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) ∈ ℂ)
3127, 28, 29, 30add42d 7944 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
327a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
3332, 10, 32, 19mul4d 7929 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))))
34 ixi 8357 . . . . . . . . . . . 12 (i · i) = -1
3534oveq1i 5784 . . . . . . . . . . 11 ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵)))
369, 18remulcld 7808 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
3736recnd 7806 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
3837mulm1d 8184 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
3935, 38syl5eq 2184 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4033, 39eqtrd 2172 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4140oveq2d 5790 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))))
4227, 37negsubd 8091 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
4341, 42eqtrd 2172 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
449, 15remulcld 7808 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
4544recnd 7806 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
46 mulcl 7759 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
477, 45, 46sylancr 410 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
485, 18remulcld 7808 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
4948recnd 7806 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
50 mulcl 7759 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
517, 49, 50sylancr 410 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
5247, 51addcomd 7925 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5332, 10, 16mulassd 7801 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) = (i · ((ℑ‘𝐴) · (ℜ‘𝐵))))
546, 32, 19mul12d 7926 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) = (i · ((ℜ‘𝐴) · (ℑ‘𝐵))))
5553, 54oveq12d 5792 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))))
5632, 49, 45adddid 7802 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5752, 55, 563eqtr4d 2182 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5843, 57oveq12d 5792 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
5925, 31, 583eqtr2d 2178 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
603, 22, 593eqtrd 2176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
6160fveq2d 5425 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
6226, 36resubcld 8155 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ)
6348, 44readdcld 7807 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ)
64 crre 10641 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6562, 63, 64syl2anc 408 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6661, 65eqtrd 2172 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6760fveq2d 5425 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
68 crim 10642 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
6962, 63, 68syl2anc 408 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
7067, 69eqtrd 2172 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
71 mulcl 7759 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
72 remim 10644 . . . 4 ((𝐴 · 𝐵) ∈ ℂ → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
7371, 72syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
74 remim 10644 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
75 remim 10644 . . . . 5 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
7674, 75oveqan12d 5793 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
7716, 21subcld 8085 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵) − (i · (ℑ‘𝐵))) ∈ ℂ)
786, 12, 77subdird 8189 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))))
7927, 30, 29, 28subadd4d 8133 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
806, 16, 21subdid 8188 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))))
8112, 16, 21subdid 8188 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8280, 81oveq12d 5792 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
8365, 61, 433eqtr4d 2182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8470oveq2d 5790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8554, 53oveq12d 5792 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8656, 84, 853eqtr4d 2182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
8783, 86oveq12d 5792 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
8879, 82, 873eqtr4d 2182 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
8976, 78, 883eqtrd 2176 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
9073, 89eqtr4d 2175 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
9166, 70, 903jca 1161 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  cc 7630  cr 7631  1c1 7633  ici 7634   + caddc 7635   · cmul 7637  cmin 7945  -cneg 7946  ccj 10623  cre 10624  cim 10625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-2 8791  df-cj 10626  df-re 10627  df-im 10628
This theorem is referenced by:  remul  10656  immul  10663  cjmul  10669
  Copyright terms: Public domain W3C validator