Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0re | GIF version |
Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0re | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9114 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | 1 | sseli 3137 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℝcr 7748 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-int 3824 df-inn 8854 df-n0 9111 |
This theorem is referenced by: nn0nlt0 9136 nn0le0eq0 9138 nn0p1gt0 9139 elnnnn0c 9155 nn0addge1 9156 nn0addge2 9157 nn0ge2m1nn 9170 nn0nndivcl 9172 xnn0xr 9178 nn0nepnf 9181 xnn0nemnf 9184 elnn0z 9200 elznn0nn 9201 ltsubnn0 9254 nn0negleid 9255 difgtsumgt 9256 nn0lt10b 9267 nn0ge0div 9274 xnn0lenn0nn0 9797 xnn0xadd0 9799 nn0fz0 10050 elfz0fzfz0 10057 fz0fzelfz0 10058 fz0fzdiffz0 10061 fzctr 10064 difelfzle 10065 difelfznle 10066 elfzo0le 10116 fzonmapblen 10118 fzofzim 10119 elfzodifsumelfzo 10132 fzonn0p1 10142 fzonn0p1p1 10144 elfzom1p1elfzo 10145 ubmelm1fzo 10157 fvinim0ffz 10172 subfzo0 10173 adddivflid 10223 divfl0 10227 flltdivnn0lt 10235 addmodid 10303 modfzo0difsn 10326 inftonninf 10372 bernneq 10571 bernneq3 10573 facwordi 10649 faclbnd 10650 faclbnd3 10652 faclbnd6 10653 facubnd 10654 facavg 10655 bcval4 10661 bcval5 10672 bcpasc 10675 fihashneq0 10704 dvdseq 11782 oddge22np1 11814 nn0ehalf 11836 nn0o 11840 nn0oddm1d2 11842 gcdn0gt0 11907 nn0gcdid0 11910 absmulgcd 11946 nn0seqcvgd 11969 algcvgblem 11977 algcvga 11979 lcmgcdnn 12010 prmfac1 12080 nonsq 12135 hashgcdlem 12166 odzdvds 12173 pcdvdsb 12247 pcidlem 12250 difsqpwdvds 12265 pcfaclem 12275 lgsdinn0 13549 |
Copyright terms: Public domain | W3C validator |