| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0re | GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0re | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9329 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | 1 | sseli 3193 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ℝcr 7954 ℕ0cn0 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4173 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 ax-rnegex 8064 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-int 3895 df-inn 9067 df-n0 9326 |
| This theorem is referenced by: nn0nlt0 9351 nn0le0eq0 9353 nn0p1gt0 9354 elnnnn0c 9370 nn0addge1 9371 nn0addge2 9372 nn0ge2m1nn 9385 nn0nndivcl 9387 xnn0xr 9393 nn0nepnf 9396 xnn0nemnf 9399 elnn0z 9415 elznn0nn 9416 ltsubnn0 9470 nn0negleid 9471 difgtsumgt 9472 nn0lt10b 9483 nn0ge0div 9490 xnn0lenn0nn0 10017 xnn0xadd0 10019 nn0fz0 10271 elfz0fzfz0 10278 fz0fzelfz0 10279 fz0fzdiffz0 10282 fzctr 10285 difelfzle 10286 difelfznle 10287 fzoun 10335 elfzo0le 10341 fzonmapblen 10343 fzofzim 10344 elincfzoext 10354 elfzodifsumelfzo 10362 fzonn0p1 10372 fzonn0p1p1 10374 elfzom1p1elfzo 10375 ubmelm1fzo 10387 fvinim0ffz 10402 subfzo0 10403 adddivflid 10467 divfl0 10471 flltdivnn0lt 10479 addmodid 10549 modfzo0difsn 10572 inftonninf 10619 bernneq 10837 bernneq3 10839 facwordi 10917 faclbnd 10918 faclbnd3 10920 faclbnd6 10921 facubnd 10922 facavg 10923 bcval4 10929 bcval5 10940 bcpasc 10943 fihashneq0 10971 ccat0 11085 swrdsbslen 11152 swrdswrdlem 11190 swrdswrd 11191 nn0maxcl 11621 dvdseq 12244 oddge22np1 12277 nn0ehalf 12299 nn0o 12303 nn0oddm1d2 12305 bitsfi 12353 gcdn0gt0 12384 nn0gcdid0 12387 absmulgcd 12423 nn0seqcvgd 12448 algcvgblem 12456 algcvga 12458 lcmgcdnn 12489 prmfac1 12559 nonsq 12614 hashgcdlem 12645 odzdvds 12653 pcdvdsb 12728 pcidlem 12731 difsqpwdvds 12746 pcfaclem 12757 lgsdinn0 15610 2lgslem1c 15652 |
| Copyright terms: Public domain | W3C validator |