| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0re | GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0re | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9272 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℝcr 7897 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: nn0nlt0 9294 nn0le0eq0 9296 nn0p1gt0 9297 elnnnn0c 9313 nn0addge1 9314 nn0addge2 9315 nn0ge2m1nn 9328 nn0nndivcl 9330 xnn0xr 9336 nn0nepnf 9339 xnn0nemnf 9342 elnn0z 9358 elznn0nn 9359 ltsubnn0 9412 nn0negleid 9413 difgtsumgt 9414 nn0lt10b 9425 nn0ge0div 9432 xnn0lenn0nn0 9959 xnn0xadd0 9961 nn0fz0 10213 elfz0fzfz0 10220 fz0fzelfz0 10221 fz0fzdiffz0 10224 fzctr 10227 difelfzle 10228 difelfznle 10229 elfzo0le 10280 fzonmapblen 10282 fzofzim 10283 elfzodifsumelfzo 10296 fzonn0p1 10306 fzonn0p1p1 10308 elfzom1p1elfzo 10309 ubmelm1fzo 10321 fvinim0ffz 10336 subfzo0 10337 adddivflid 10401 divfl0 10405 flltdivnn0lt 10413 addmodid 10483 modfzo0difsn 10506 inftonninf 10553 bernneq 10771 bernneq3 10773 facwordi 10851 faclbnd 10852 faclbnd3 10854 faclbnd6 10855 facubnd 10856 facavg 10857 bcval4 10863 bcval5 10874 bcpasc 10877 fihashneq0 10905 nn0maxcl 11409 dvdseq 12032 oddge22np1 12065 nn0ehalf 12087 nn0o 12091 nn0oddm1d2 12093 bitsfi 12141 gcdn0gt0 12172 nn0gcdid0 12175 absmulgcd 12211 nn0seqcvgd 12236 algcvgblem 12244 algcvga 12246 lcmgcdnn 12277 prmfac1 12347 nonsq 12402 hashgcdlem 12433 odzdvds 12441 pcdvdsb 12516 pcidlem 12519 difsqpwdvds 12534 pcfaclem 12545 lgsdinn0 15397 2lgslem1c 15439 |
| Copyright terms: Public domain | W3C validator |