| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0re | GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0re | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9299 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | 1 | sseli 3189 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ℝcr 7924 ℕ0cn0 9295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-int 3886 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: nn0nlt0 9321 nn0le0eq0 9323 nn0p1gt0 9324 elnnnn0c 9340 nn0addge1 9341 nn0addge2 9342 nn0ge2m1nn 9355 nn0nndivcl 9357 xnn0xr 9363 nn0nepnf 9366 xnn0nemnf 9369 elnn0z 9385 elznn0nn 9386 ltsubnn0 9440 nn0negleid 9441 difgtsumgt 9442 nn0lt10b 9453 nn0ge0div 9460 xnn0lenn0nn0 9987 xnn0xadd0 9989 nn0fz0 10241 elfz0fzfz0 10248 fz0fzelfz0 10249 fz0fzdiffz0 10252 fzctr 10255 difelfzle 10256 difelfznle 10257 elfzo0le 10309 fzonmapblen 10311 fzofzim 10312 elincfzoext 10322 elfzodifsumelfzo 10330 fzonn0p1 10340 fzonn0p1p1 10342 elfzom1p1elfzo 10343 ubmelm1fzo 10355 fvinim0ffz 10370 subfzo0 10371 adddivflid 10435 divfl0 10439 flltdivnn0lt 10447 addmodid 10517 modfzo0difsn 10540 inftonninf 10587 bernneq 10805 bernneq3 10807 facwordi 10885 faclbnd 10886 faclbnd3 10888 faclbnd6 10889 facubnd 10890 facavg 10891 bcval4 10897 bcval5 10908 bcpasc 10911 fihashneq0 10939 ccat0 11052 swrdsbslen 11119 nn0maxcl 11536 dvdseq 12159 oddge22np1 12192 nn0ehalf 12214 nn0o 12218 nn0oddm1d2 12220 bitsfi 12268 gcdn0gt0 12299 nn0gcdid0 12302 absmulgcd 12338 nn0seqcvgd 12363 algcvgblem 12371 algcvga 12373 lcmgcdnn 12404 prmfac1 12474 nonsq 12529 hashgcdlem 12560 odzdvds 12568 pcdvdsb 12643 pcidlem 12646 difsqpwdvds 12661 pcfaclem 12672 lgsdinn0 15525 2lgslem1c 15567 |
| Copyright terms: Public domain | W3C validator |