| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0re | GIF version | ||
| Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0re | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9298 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | 1 | sseli 3188 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ℝcr 7923 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-int 3885 df-inn 9036 df-n0 9295 |
| This theorem is referenced by: nn0nlt0 9320 nn0le0eq0 9322 nn0p1gt0 9323 elnnnn0c 9339 nn0addge1 9340 nn0addge2 9341 nn0ge2m1nn 9354 nn0nndivcl 9356 xnn0xr 9362 nn0nepnf 9365 xnn0nemnf 9368 elnn0z 9384 elznn0nn 9385 ltsubnn0 9439 nn0negleid 9440 difgtsumgt 9441 nn0lt10b 9452 nn0ge0div 9459 xnn0lenn0nn0 9986 xnn0xadd0 9988 nn0fz0 10240 elfz0fzfz0 10247 fz0fzelfz0 10248 fz0fzdiffz0 10251 fzctr 10254 difelfzle 10255 difelfznle 10256 elfzo0le 10307 fzonmapblen 10309 fzofzim 10310 elincfzoext 10320 elfzodifsumelfzo 10328 fzonn0p1 10338 fzonn0p1p1 10340 elfzom1p1elfzo 10341 ubmelm1fzo 10353 fvinim0ffz 10368 subfzo0 10369 adddivflid 10433 divfl0 10437 flltdivnn0lt 10445 addmodid 10515 modfzo0difsn 10538 inftonninf 10585 bernneq 10803 bernneq3 10805 facwordi 10883 faclbnd 10884 faclbnd3 10886 faclbnd6 10887 facubnd 10888 facavg 10889 bcval4 10895 bcval5 10906 bcpasc 10909 fihashneq0 10937 ccat0 11050 nn0maxcl 11478 dvdseq 12101 oddge22np1 12134 nn0ehalf 12156 nn0o 12160 nn0oddm1d2 12162 bitsfi 12210 gcdn0gt0 12241 nn0gcdid0 12244 absmulgcd 12280 nn0seqcvgd 12305 algcvgblem 12313 algcvga 12315 lcmgcdnn 12346 prmfac1 12416 nonsq 12471 hashgcdlem 12502 odzdvds 12510 pcdvdsb 12585 pcidlem 12588 difsqpwdvds 12603 pcfaclem 12614 lgsdinn0 15467 2lgslem1c 15509 |
| Copyright terms: Public domain | W3C validator |