![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0re | GIF version |
Description: A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0re | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9244 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | 1 | sseli 3175 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℝcr 7871 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-int 3871 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0nlt0 9266 nn0le0eq0 9268 nn0p1gt0 9269 elnnnn0c 9285 nn0addge1 9286 nn0addge2 9287 nn0ge2m1nn 9300 nn0nndivcl 9302 xnn0xr 9308 nn0nepnf 9311 xnn0nemnf 9314 elnn0z 9330 elznn0nn 9331 ltsubnn0 9384 nn0negleid 9385 difgtsumgt 9386 nn0lt10b 9397 nn0ge0div 9404 xnn0lenn0nn0 9931 xnn0xadd0 9933 nn0fz0 10185 elfz0fzfz0 10192 fz0fzelfz0 10193 fz0fzdiffz0 10196 fzctr 10199 difelfzle 10200 difelfznle 10201 elfzo0le 10252 fzonmapblen 10254 fzofzim 10255 elfzodifsumelfzo 10268 fzonn0p1 10278 fzonn0p1p1 10280 elfzom1p1elfzo 10281 ubmelm1fzo 10293 fvinim0ffz 10308 subfzo0 10309 adddivflid 10361 divfl0 10365 flltdivnn0lt 10373 addmodid 10443 modfzo0difsn 10466 inftonninf 10513 bernneq 10731 bernneq3 10733 facwordi 10811 faclbnd 10812 faclbnd3 10814 faclbnd6 10815 facubnd 10816 facavg 10817 bcval4 10823 bcval5 10834 bcpasc 10837 fihashneq0 10865 dvdseq 11990 oddge22np1 12022 nn0ehalf 12044 nn0o 12048 nn0oddm1d2 12050 gcdn0gt0 12115 nn0gcdid0 12118 absmulgcd 12154 nn0seqcvgd 12179 algcvgblem 12187 algcvga 12189 lcmgcdnn 12220 prmfac1 12290 nonsq 12345 hashgcdlem 12376 odzdvds 12383 pcdvdsb 12458 pcidlem 12461 difsqpwdvds 12476 pcfaclem 12487 lgsdinn0 15164 |
Copyright terms: Public domain | W3C validator |