ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numlt GIF version

Theorem numlt 9157
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1 𝑇 ∈ ℕ
numlt.2 𝐴 ∈ ℕ0
numlt.3 𝐵 ∈ ℕ0
numlt.4 𝐶 ∈ ℕ
numlt.5 𝐵 < 𝐶
Assertion
Ref Expression
numlt ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶)

Proof of Theorem numlt
StepHypRef Expression
1 numlt.5 . 2 𝐵 < 𝐶
2 numlt.3 . . . 4 𝐵 ∈ ℕ0
32nn0rei 8939 . . 3 𝐵 ∈ ℝ
4 numlt.4 . . . 4 𝐶 ∈ ℕ
54nnrei 8686 . . 3 𝐶 ∈ ℝ
6 numlt.1 . . . . . 6 𝑇 ∈ ℕ
76nnnn0i 8936 . . . . 5 𝑇 ∈ ℕ0
8 numlt.2 . . . . 5 𝐴 ∈ ℕ0
97, 8nn0mulcli 8966 . . . 4 (𝑇 · 𝐴) ∈ ℕ0
109nn0rei 8939 . . 3 (𝑇 · 𝐴) ∈ ℝ
113, 5, 10ltadd2i 8146 . 2 (𝐵 < 𝐶 ↔ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶))
121, 11mpbi 144 1 ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶)
Colors of variables: wff set class
Syntax hints:  wcel 1463   class class class wbr 3897  (class class class)co 5740   + caddc 7587   · cmul 7589   < clt 7764  cn 8677  0cn0 8928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-ltxr 7769  df-sub 7899  df-inn 8678  df-n0 8929
This theorem is referenced by:  numltc  9158  declt  9160
  Copyright terms: Public domain W3C validator