ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numlti GIF version

Theorem numlti 9512
Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlti.1 𝑇 ∈ ℕ
numlti.2 𝐴 ∈ ℕ
numlti.3 𝐵 ∈ ℕ0
numlti.4 𝐶 ∈ ℕ0
numlti.5 𝐶 < 𝑇
Assertion
Ref Expression
numlti 𝐶 < ((𝑇 · 𝐴) + 𝐵)

Proof of Theorem numlti
StepHypRef Expression
1 numlti.1 . . . 4 𝑇 ∈ ℕ
21nnnn0i 9276 . . 3 𝑇 ∈ ℕ0
3 numlti.4 . . 3 𝐶 ∈ ℕ0
42, 3num0h 9487 . 2 𝐶 = ((𝑇 · 0) + 𝐶)
5 0nn0 9283 . . 3 0 ∈ ℕ0
6 numlti.2 . . . 4 𝐴 ∈ ℕ
76nnnn0i 9276 . . 3 𝐴 ∈ ℕ0
8 numlti.3 . . 3 𝐵 ∈ ℕ0
9 numlti.5 . . 3 𝐶 < 𝑇
106nngt0i 9039 . . 3 0 < 𝐴
111, 5, 7, 3, 8, 9, 10numltc 9501 . 2 ((𝑇 · 0) + 𝐶) < ((𝑇 · 𝐴) + 𝐵)
124, 11eqbrtri 4055 1 𝐶 < ((𝑇 · 𝐴) + 𝐵)
Colors of variables: wff set class
Syntax hints:  wcel 2167   class class class wbr 4034  (class class class)co 5925  0cc0 7898   + caddc 7901   · cmul 7903   < clt 8080  cn 9009  0cn0 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014  ax-pre-mulgt0 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346
This theorem is referenced by:  declti  9513  dec5nprm  12610  dec2nprm  12611
  Copyright terms: Public domain W3C validator