Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6nn0 | GIF version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 | ⊢ 6 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9022 | . 2 ⊢ 6 ∈ ℕ | |
2 | 1 | nnnn0i 9122 | 1 ⊢ 6 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 6c6 8912 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-n0 9115 |
This theorem is referenced by: 6p5e11 9394 6p6e12 9395 7p7e14 9400 8p7e15 9406 9p7e16 9413 9p8e17 9414 6t3e18 9426 6t4e24 9427 6t5e30 9428 6t6e36 9429 7t7e49 9435 8t3e24 9437 8t7e56 9441 8t8e64 9442 9t4e36 9445 9t5e45 9446 9t7e63 9448 9t8e72 9449 6lcm4e12 12019 ex-exp 13608 |
Copyright terms: Public domain | W3C validator |