![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6nn0 | GIF version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 | ⊢ 6 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9150 | . 2 ⊢ 6 ∈ ℕ | |
2 | 1 | nnnn0i 9251 | 1 ⊢ 6 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 6c6 9039 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-n0 9244 |
This theorem is referenced by: 6p5e11 9523 6p6e12 9524 7p7e14 9529 8p7e15 9535 9p7e16 9542 9p8e17 9543 6t3e18 9555 6t4e24 9556 6t5e30 9557 6t6e36 9558 7t7e49 9564 8t3e24 9566 8t7e56 9570 8t8e64 9571 9t4e36 9574 9t5e45 9575 9t7e63 9577 9t8e72 9578 6lcm4e12 12228 slotsdnscsi 12839 ex-exp 15289 |
Copyright terms: Public domain | W3C validator |