| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn0 | GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9201 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 9302 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 6c6 9090 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-n0 9295 |
| This theorem is referenced by: 6p5e11 9575 6p6e12 9576 7p7e14 9581 8p7e15 9587 9p7e16 9594 9p8e17 9595 6t3e18 9607 6t4e24 9608 6t5e30 9609 6t6e36 9610 7t7e49 9616 8t3e24 9618 8t7e56 9622 8t8e64 9623 9t4e36 9626 9t5e45 9627 9t7e63 9629 9t8e72 9630 6lcm4e12 12351 2exp7 12699 2exp8 12700 2exp11 12701 2exp16 12702 2expltfac 12704 slotsdnscsi 12997 ex-exp 15596 |
| Copyright terms: Public domain | W3C validator |