| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn0 | GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9175 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 9276 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 6c6 9064 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-n0 9269 |
| This theorem is referenced by: 6p5e11 9548 6p6e12 9549 7p7e14 9554 8p7e15 9560 9p7e16 9567 9p8e17 9568 6t3e18 9580 6t4e24 9581 6t5e30 9582 6t6e36 9583 7t7e49 9589 8t3e24 9591 8t7e56 9595 8t8e64 9596 9t4e36 9599 9t5e45 9600 9t7e63 9602 9t8e72 9603 6lcm4e12 12282 2exp7 12630 2exp8 12631 2exp11 12632 2exp16 12633 2expltfac 12635 slotsdnscsi 12927 ex-exp 15481 |
| Copyright terms: Public domain | W3C validator |