![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6nn0 | GIF version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 | ⊢ 6 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 8581 | . 2 ⊢ 6 ∈ ℕ | |
2 | 1 | nnnn0i 8681 | 1 ⊢ 6 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 6c6 8477 ℕ0cn0 8673 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7436 ax-resscn 7437 ax-1re 7439 ax-addrcl 7442 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 df-inn 8423 df-2 8481 df-3 8482 df-4 8483 df-5 8484 df-6 8485 df-n0 8674 |
This theorem is referenced by: 6p5e11 8949 6p6e12 8950 7p7e14 8955 8p7e15 8961 9p7e16 8968 9p8e17 8969 6t3e18 8981 6t4e24 8982 6t5e30 8983 6t6e36 8984 7t7e49 8990 8t3e24 8992 8t7e56 8996 8t8e64 8997 9t4e36 9000 9t5e45 9001 9t7e63 9003 9t8e72 9004 6lcm4e12 11347 ex-exp 11654 |
Copyright terms: Public domain | W3C validator |