| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn0 | GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9272 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 9373 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 6c6 9161 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-n0 9366 |
| This theorem is referenced by: 6p5e11 9646 6p6e12 9647 7p7e14 9652 8p7e15 9658 9p7e16 9665 9p8e17 9666 6t3e18 9678 6t4e24 9679 6t5e30 9680 6t6e36 9681 7t7e49 9687 8t3e24 9689 8t7e56 9693 8t8e64 9694 9t4e36 9697 9t5e45 9698 9t7e63 9700 9t8e72 9701 6lcm4e12 12604 2exp7 12952 2exp8 12953 2exp11 12954 2exp16 12955 2expltfac 12957 slotsdnscsi 13251 ex-exp 16049 |
| Copyright terms: Public domain | W3C validator |