| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6nn0 | GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9222 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 9323 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 6c6 9111 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-n0 9316 |
| This theorem is referenced by: 6p5e11 9596 6p6e12 9597 7p7e14 9602 8p7e15 9608 9p7e16 9615 9p8e17 9616 6t3e18 9628 6t4e24 9629 6t5e30 9630 6t6e36 9631 7t7e49 9637 8t3e24 9639 8t7e56 9643 8t8e64 9644 9t4e36 9647 9t5e45 9648 9t7e63 9650 9t8e72 9651 6lcm4e12 12484 2exp7 12832 2exp8 12833 2exp11 12834 2exp16 12835 2expltfac 12837 slotsdnscsi 13130 ex-exp 15802 |
| Copyright terms: Public domain | W3C validator |