| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn0 | GIF version | ||
| Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 4nn0 | ⊢ 4 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 9199 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnnn0i 9302 | 1 ⊢ 4 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 4c4 9088 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 |
| This theorem is referenced by: 6p5e11 9575 7p5e12 9579 8p5e13 9585 8p7e15 9587 9p5e14 9592 9p6e15 9593 4t3e12 9600 4t4e16 9601 5t5e25 9605 6t4e24 9608 6t5e30 9609 7t3e21 9612 7t5e35 9614 7t7e49 9616 8t3e24 9618 8t4e32 9619 8t5e40 9620 8t6e48 9621 8t7e56 9622 8t8e64 9623 9t5e45 9627 9t6e54 9628 9t7e63 9629 decbin3 9644 fzo0to42pr 10347 4bc3eq4 10916 resin4p 11971 recos4p 11972 ef01bndlem 12009 sin01bnd 12010 cos01bnd 12011 prm23lt5 12528 2exp7 12699 2exp8 12700 2exp11 12701 2exp16 12702 2expltfac 12704 slotsdifdsndx 12999 slotsdifunifndx 13006 prdsvalstrd 13045 binom4 15393 2lgslem3a 15512 2lgslem3b 15513 2lgslem3c 15514 2lgslem3d 15515 ex-exp 15596 ex-fac 15597 ex-bc 15598 |
| Copyright terms: Public domain | W3C validator |