| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn0 | GIF version | ||
| Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 4nn0 | ⊢ 4 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 9171 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnnn0i 9274 | 1 ⊢ 4 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 4c4 9060 ℕ0cn0 9266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 |
| This theorem is referenced by: 6p5e11 9546 7p5e12 9550 8p5e13 9556 8p7e15 9558 9p5e14 9563 9p6e15 9564 4t3e12 9571 4t4e16 9572 5t5e25 9576 6t4e24 9579 6t5e30 9580 7t3e21 9583 7t5e35 9585 7t7e49 9587 8t3e24 9589 8t4e32 9590 8t5e40 9591 8t6e48 9592 8t7e56 9593 8t8e64 9594 9t5e45 9598 9t6e54 9599 9t7e63 9600 decbin3 9615 fzo0to42pr 10313 4bc3eq4 10882 resin4p 11900 recos4p 11901 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 prm23lt5 12457 2exp7 12628 2exp8 12629 2exp11 12630 2exp16 12631 2expltfac 12633 slotsdifdsndx 12927 slotsdifunifndx 12934 prdsvalstrd 12973 binom4 15299 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 ex-exp 15457 ex-fac 15458 ex-bc 15459 |
| Copyright terms: Public domain | W3C validator |