| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 4nn0 | GIF version | ||
| Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| 4nn0 | ⊢ 4 ∈ ℕ0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 4nn 9154 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnnn0i 9257 | 1 ⊢ 4 ∈ ℕ0 | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 4c4 9043 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 | 
| This theorem is referenced by: 6p5e11 9529 7p5e12 9533 8p5e13 9539 8p7e15 9541 9p5e14 9546 9p6e15 9547 4t3e12 9554 4t4e16 9555 5t5e25 9559 6t4e24 9562 6t5e30 9563 7t3e21 9566 7t5e35 9568 7t7e49 9570 8t3e24 9572 8t4e32 9573 8t5e40 9574 8t6e48 9575 8t7e56 9576 8t8e64 9577 9t5e45 9581 9t6e54 9582 9t7e63 9583 decbin3 9598 fzo0to42pr 10296 4bc3eq4 10865 resin4p 11883 recos4p 11884 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 prm23lt5 12432 2exp7 12603 2exp8 12604 2exp11 12605 2exp16 12606 2expltfac 12608 slotsdifdsndx 12898 slotsdifunifndx 12905 binom4 15215 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 ex-exp 15373 ex-fac 15374 ex-bc 15375 | 
| Copyright terms: Public domain | W3C validator |