| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn0 | GIF version | ||
| Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 4nn0 | ⊢ 4 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 9220 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnnn0i 9323 | 1 ⊢ 4 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 4c4 9109 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 |
| This theorem is referenced by: 6p5e11 9596 7p5e12 9600 8p5e13 9606 8p7e15 9608 9p5e14 9613 9p6e15 9614 4t3e12 9621 4t4e16 9622 5t5e25 9626 6t4e24 9629 6t5e30 9630 7t3e21 9633 7t5e35 9635 7t7e49 9637 8t3e24 9639 8t4e32 9640 8t5e40 9641 8t6e48 9642 8t7e56 9643 8t8e64 9644 9t5e45 9648 9t6e54 9649 9t7e63 9650 decbin3 9665 fzo0to42pr 10371 4bc3eq4 10940 resin4p 12104 recos4p 12105 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 prm23lt5 12661 2exp7 12832 2exp8 12833 2exp11 12834 2exp16 12835 2expltfac 12837 slotsdifdsndx 13132 slotsdifunifndx 13139 prdsvalstrd 13178 binom4 15526 2lgslem3a 15645 2lgslem3b 15646 2lgslem3c 15647 2lgslem3d 15648 ex-exp 15802 ex-fac 15803 ex-bc 15804 |
| Copyright terms: Public domain | W3C validator |