![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4nn0 | GIF version |
Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
4nn0 | ⊢ 4 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 9145 | . 2 ⊢ 4 ∈ ℕ | |
2 | 1 | nnnn0i 9248 | 1 ⊢ 4 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 4c4 9035 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 |
This theorem is referenced by: 6p5e11 9520 7p5e12 9524 8p5e13 9530 8p7e15 9532 9p5e14 9537 9p6e15 9538 4t3e12 9545 4t4e16 9546 5t5e25 9550 6t4e24 9553 6t5e30 9554 7t3e21 9557 7t5e35 9559 7t7e49 9561 8t3e24 9563 8t4e32 9564 8t5e40 9565 8t6e48 9566 8t7e56 9567 8t8e64 9568 9t5e45 9572 9t6e54 9573 9t7e63 9574 decbin3 9589 fzo0to42pr 10287 4bc3eq4 10844 resin4p 11861 recos4p 11862 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 prm23lt5 12401 slotsdifdsndx 12838 slotsdifunifndx 12845 cnfldstr 14049 binom4 15111 ex-exp 15219 ex-fac 15220 ex-bc 15221 |
Copyright terms: Public domain | W3C validator |