| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn0 | GIF version | ||
| Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 4nn0 | ⊢ 4 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 9270 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnnn0i 9373 | 1 ⊢ 4 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 4c4 9159 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 |
| This theorem is referenced by: 6p5e11 9646 7p5e12 9650 8p5e13 9656 8p7e15 9658 9p5e14 9663 9p6e15 9664 4t3e12 9671 4t4e16 9672 5t5e25 9676 6t4e24 9679 6t5e30 9680 7t3e21 9683 7t5e35 9685 7t7e49 9687 8t3e24 9689 8t4e32 9690 8t5e40 9691 8t6e48 9692 8t7e56 9693 8t8e64 9694 9t5e45 9698 9t6e54 9699 9t7e63 9700 decbin3 9715 fzo0to42pr 10421 4bc3eq4 10990 resin4p 12224 recos4p 12225 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 prm23lt5 12781 2exp7 12952 2exp8 12953 2exp11 12954 2exp16 12955 2expltfac 12957 slotsdifdsndx 13253 slotsdifunifndx 13260 prdsvalstrd 13299 binom4 15647 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 ex-exp 16049 ex-fac 16050 ex-bc 16051 |
| Copyright terms: Public domain | W3C validator |