Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4nn0 | GIF version |
Description: 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
4nn0 | ⊢ 4 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 9055 | . 2 ⊢ 4 ∈ ℕ | |
2 | 1 | nnnn0i 9157 | 1 ⊢ 4 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 4c4 8945 ℕ0cn0 9149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-n0 9150 |
This theorem is referenced by: 6p5e11 9429 7p5e12 9433 8p5e13 9439 8p7e15 9441 9p5e14 9446 9p6e15 9447 4t3e12 9454 4t4e16 9455 5t5e25 9459 6t4e24 9462 6t5e30 9463 7t3e21 9466 7t5e35 9468 7t7e49 9470 8t3e24 9472 8t4e32 9473 8t5e40 9474 8t6e48 9475 8t7e56 9476 8t8e64 9477 9t5e45 9481 9t6e54 9482 9t7e63 9483 decbin3 9498 fzo0to42pr 10190 4bc3eq4 10721 resin4p 11694 recos4p 11695 ef01bndlem 11732 sin01bnd 11733 cos01bnd 11734 prm23lt5 12230 slotsdifdsndx 12609 binom4 13968 ex-exp 14039 ex-fac 14040 ex-bc 14041 |
Copyright terms: Public domain | W3C validator |