![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 | ⊢ 1 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8496 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnnn0i 8744 | 1 ⊢ 1 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1439 1c1 7414 ℕ0cn0 8736 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-1re 7502 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-v 2624 df-un 3006 df-in 3008 df-ss 3015 df-int 3697 df-inn 8486 df-n0 8737 |
This theorem is referenced by: peano2nn0 8776 deccl 8954 10nn0 8957 numsucc 8979 numadd 8986 numaddc 8987 11multnc 9007 6p5lem 9009 6p6e12 9013 7p5e12 9016 8p4e12 9021 9p2e11 9026 9p3e12 9027 10p10e20 9034 4t4e16 9038 5t2e10 9039 5t4e20 9041 6t3e18 9044 6t4e24 9045 7t3e21 9049 7t4e28 9050 8t3e24 9055 9t3e27 9062 9t9e81 9068 nn01to3 9165 elfzom1elp1fzo 9676 fzo0sn0fzo1 9695 1tonninf 9909 expn1ap0 10028 nn0expcl 10032 sqval 10076 sq10 10184 nn0opthlem1d 10191 fac2 10202 bccl 10238 hashsng 10269 1elfz0hash 10277 bcxmas 10946 arisum 10955 geoisum1 10976 geoisum1c 10977 cvgratnnlemsumlt 10985 mertenslem2 10993 ege2le3 11024 ef4p 11047 efgt1p2 11048 efgt1p 11049 sin01gt0 11115 dvds1 11195 3dvds2dec 11207 1kp2ke3k 11955 ex-exp 11958 ex-fac 11959 |
Copyright terms: Public domain | W3C validator |