| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 | ⊢ 1 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9020 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnnn0i 9276 | 1 ⊢ 1 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7899 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7992 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-int 3876 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: peano2nn0 9308 deccl 9490 10nn0 9493 numsucc 9515 numadd 9522 numaddc 9523 11multnc 9543 6p5lem 9545 6p6e12 9549 7p5e12 9552 8p4e12 9557 9p2e11 9562 9p3e12 9563 10p10e20 9570 4t4e16 9574 5t2e10 9575 5t4e20 9577 6t3e18 9580 6t4e24 9581 7t3e21 9585 7t4e28 9586 8t3e24 9591 9t3e27 9598 9t9e81 9604 nn01to3 9710 fz0to3un2pr 10217 elfzom1elp1fzo 10297 fzo0sn0fzo1 10316 fldiv4lem1div2 10416 1tonninf 10552 expn1ap0 10660 nn0expcl 10664 sqval 10708 sq10 10823 nn0opthlem1d 10831 fac2 10842 bccl 10878 hashsng 10909 1elfz0hash 10917 snopiswrd 10964 wrdred1hash 10997 bcxmas 11673 arisum 11682 geoisum1 11703 geoisum1c 11704 cvgratnnlemsumlt 11712 mertenslem2 11720 fprodnn0cl 11796 ege2le3 11855 ef4p 11878 efgt1p2 11879 efgt1p 11880 sin01gt0 11946 dvds1 12037 3dvds2dec 12050 5ndvds6 12119 bitsmod 12140 bitsinv1lem 12145 isprm5 12337 pcelnn 12517 pockthg 12553 dec5nprm 12610 dec2nprm 12611 modxp1i 12614 2exp8 12631 2exp11 12632 2exp16 12633 2expltfac 12635 ennnfonelemhom 12659 ocndx 12915 ocid 12916 basendxnocndx 12917 plendxnocndx 12918 dsndx 12919 dsid 12920 dsslid 12921 dsndxnn 12922 basendxltdsndx 12923 slotsdifdsndx 12929 unifndx 12930 unifid 12931 unifndxnn 12932 basendxltunifndx 12933 slotsdifunifndx 12936 homndx 12937 homid 12938 homslid 12939 ccondx 12940 ccoid 12941 ccoslid 12942 imasvalstrd 12974 prdsvalstrd 12975 cnfldstr 14192 dveflem 15070 plyid 15090 1sgmprm 15338 perfectlem1 15343 perfectlem2 15344 2lgslem3a 15442 2lgslem3c 15444 1kp2ke3k 15478 ex-exp 15481 ex-fac 15482 012of 15748 isomninnlem 15787 trilpolemisumle 15795 iswomninnlem 15806 iswomni0 15808 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |