![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 | ⊢ 1 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8993 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnnn0i 9248 | 1 ⊢ 1 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 1c1 7873 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7966 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-int 3871 df-inn 8983 df-n0 9241 |
This theorem is referenced by: peano2nn0 9280 deccl 9462 10nn0 9465 numsucc 9487 numadd 9494 numaddc 9495 11multnc 9515 6p5lem 9517 6p6e12 9521 7p5e12 9524 8p4e12 9529 9p2e11 9534 9p3e12 9535 10p10e20 9542 4t4e16 9546 5t2e10 9547 5t4e20 9549 6t3e18 9552 6t4e24 9553 7t3e21 9557 7t4e28 9558 8t3e24 9563 9t3e27 9570 9t9e81 9576 nn01to3 9682 fz0to3un2pr 10189 elfzom1elp1fzo 10269 fzo0sn0fzo1 10288 fldiv4lem1div2 10376 1tonninf 10512 expn1ap0 10620 nn0expcl 10624 sqval 10668 sq10 10783 nn0opthlem1d 10791 fac2 10802 bccl 10838 hashsng 10869 1elfz0hash 10877 snopiswrd 10924 wrdred1hash 10957 bcxmas 11632 arisum 11641 geoisum1 11662 geoisum1c 11663 cvgratnnlemsumlt 11671 mertenslem2 11679 fprodnn0cl 11755 ege2le3 11814 ef4p 11837 efgt1p2 11838 efgt1p 11839 sin01gt0 11905 dvds1 11995 3dvds2dec 12007 isprm5 12280 pcelnn 12459 pockthg 12495 ennnfonelemhom 12572 dsndx 12828 dsid 12829 dsslid 12830 dsndxnn 12831 basendxltdsndx 12832 slotsdifdsndx 12838 unifndx 12839 unifid 12840 unifndxnn 12841 basendxltunifndx 12842 slotsdifunifndx 12845 homid 12846 homslid 12847 ccoid 12848 ccoslid 12849 cnfldstr 14049 dveflem 14872 plyid 14892 1kp2ke3k 15216 ex-exp 15219 ex-fac 15220 012of 15486 isomninnlem 15520 trilpolemisumle 15528 iswomninnlem 15539 iswomni0 15541 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |