| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 | ⊢ 1 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9117 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnnn0i 9373 | 1 ⊢ 1 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 1c1 7996 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8089 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-int 3923 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: peano2nn0 9405 deccl 9588 10nn0 9591 numsucc 9613 numadd 9620 numaddc 9621 11multnc 9641 6p5lem 9643 6p6e12 9647 7p5e12 9650 8p4e12 9655 9p2e11 9660 9p3e12 9661 10p10e20 9668 4t4e16 9672 5t2e10 9673 5t4e20 9675 6t3e18 9678 6t4e24 9679 7t3e21 9683 7t4e28 9684 8t3e24 9689 9t3e27 9696 9t9e81 9702 nn01to3 9808 fz0to3un2pr 10315 elfzom1elp1fzo 10403 fzo0sn0fzo1 10422 fldiv4lem1div2 10522 1tonninf 10658 expn1ap0 10766 nn0expcl 10770 sqval 10814 sq10 10929 nn0opthlem1d 10937 fac2 10948 bccl 10984 hashsng 11015 1elfz0hash 11023 snopiswrd 11076 wrdred1hash 11110 pfx1 11230 s3fv1g 11319 bcxmas 11995 arisum 12004 geoisum1 12025 geoisum1c 12026 cvgratnnlemsumlt 12034 mertenslem2 12042 fprodnn0cl 12118 ege2le3 12177 ef4p 12200 efgt1p2 12201 efgt1p 12202 sin01gt0 12268 dvds1 12359 3dvds2dec 12372 5ndvds6 12441 bitsmod 12462 bitsinv1lem 12467 isprm5 12659 pcelnn 12839 pockthg 12875 dec5nprm 12932 dec2nprm 12933 modxp1i 12936 2exp8 12953 2exp11 12954 2exp16 12955 2expltfac 12957 ennnfonelemhom 12981 ocndx 13239 ocid 13240 basendxnocndx 13241 plendxnocndx 13242 dsndx 13243 dsid 13244 dsslid 13245 dsndxnn 13246 basendxltdsndx 13247 slotsdifdsndx 13253 unifndx 13254 unifid 13255 unifndxnn 13256 basendxltunifndx 13257 slotsdifunifndx 13260 homndx 13261 homid 13262 homslid 13263 ccondx 13264 ccoid 13265 ccoslid 13266 imasvalstrd 13298 prdsvalstrd 13299 cnfldstr 14516 dveflem 15394 plyid 15414 1sgmprm 15662 perfectlem1 15667 perfectlem2 15668 2lgslem3a 15766 2lgslem3c 15768 edgfid 15801 edgfndx 15802 edgfndxnn 15803 basendxltedgfndx 15805 1kp2ke3k 16046 ex-exp 16049 ex-fac 16050 012of 16316 isomninnlem 16357 trilpolemisumle 16365 iswomninnlem 16376 iswomni0 16378 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |