| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 | ⊢ 1 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9067 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnnn0i 9323 | 1 ⊢ 1 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 1c1 7946 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1re 8039 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-int 3892 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: peano2nn0 9355 deccl 9538 10nn0 9541 numsucc 9563 numadd 9570 numaddc 9571 11multnc 9591 6p5lem 9593 6p6e12 9597 7p5e12 9600 8p4e12 9605 9p2e11 9610 9p3e12 9611 10p10e20 9618 4t4e16 9622 5t2e10 9623 5t4e20 9625 6t3e18 9628 6t4e24 9629 7t3e21 9633 7t4e28 9634 8t3e24 9639 9t3e27 9646 9t9e81 9652 nn01to3 9758 fz0to3un2pr 10265 elfzom1elp1fzo 10353 fzo0sn0fzo1 10372 fldiv4lem1div2 10472 1tonninf 10608 expn1ap0 10716 nn0expcl 10720 sqval 10764 sq10 10879 nn0opthlem1d 10887 fac2 10898 bccl 10934 hashsng 10965 1elfz0hash 10973 snopiswrd 11026 wrdred1hash 11059 pfx1 11179 bcxmas 11875 arisum 11884 geoisum1 11905 geoisum1c 11906 cvgratnnlemsumlt 11914 mertenslem2 11922 fprodnn0cl 11998 ege2le3 12057 ef4p 12080 efgt1p2 12081 efgt1p 12082 sin01gt0 12148 dvds1 12239 3dvds2dec 12252 5ndvds6 12321 bitsmod 12342 bitsinv1lem 12347 isprm5 12539 pcelnn 12719 pockthg 12755 dec5nprm 12812 dec2nprm 12813 modxp1i 12816 2exp8 12833 2exp11 12834 2exp16 12835 2expltfac 12837 ennnfonelemhom 12861 ocndx 13118 ocid 13119 basendxnocndx 13120 plendxnocndx 13121 dsndx 13122 dsid 13123 dsslid 13124 dsndxnn 13125 basendxltdsndx 13126 slotsdifdsndx 13132 unifndx 13133 unifid 13134 unifndxnn 13135 basendxltunifndx 13136 slotsdifunifndx 13139 homndx 13140 homid 13141 homslid 13142 ccondx 13143 ccoid 13144 ccoslid 13145 imasvalstrd 13177 prdsvalstrd 13178 cnfldstr 14395 dveflem 15273 plyid 15293 1sgmprm 15541 perfectlem1 15546 perfectlem2 15547 2lgslem3a 15645 2lgslem3c 15647 edgfid 15680 edgfndx 15681 edgfndxnn 15682 basendxltedgfndx 15684 1kp2ke3k 15799 ex-exp 15802 ex-fac 15803 012of 16069 isomninnlem 16110 trilpolemisumle 16118 iswomninnlem 16129 iswomni0 16131 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |