Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 | ⊢ 1 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8864 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnnn0i 9118 | 1 ⊢ 1 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 1c1 7750 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1re 7843 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-int 3824 df-inn 8854 df-n0 9111 |
This theorem is referenced by: peano2nn0 9150 deccl 9332 10nn0 9335 numsucc 9357 numadd 9364 numaddc 9365 11multnc 9385 6p5lem 9387 6p6e12 9391 7p5e12 9394 8p4e12 9399 9p2e11 9404 9p3e12 9405 10p10e20 9412 4t4e16 9416 5t2e10 9417 5t4e20 9419 6t3e18 9422 6t4e24 9423 7t3e21 9427 7t4e28 9428 8t3e24 9433 9t3e27 9440 9t9e81 9446 nn01to3 9551 fz0to3un2pr 10054 elfzom1elp1fzo 10133 fzo0sn0fzo1 10152 1tonninf 10371 expn1ap0 10461 nn0expcl 10465 sqval 10509 sq10 10621 nn0opthlem1d 10629 fac2 10640 bccl 10676 hashsng 10707 1elfz0hash 10715 bcxmas 11426 arisum 11435 geoisum1 11456 geoisum1c 11457 cvgratnnlemsumlt 11465 mertenslem2 11473 fprodnn0cl 11549 ege2le3 11608 ef4p 11631 efgt1p2 11632 efgt1p 11633 sin01gt0 11698 dvds1 11787 3dvds2dec 11799 isprm5 12070 pcelnn 12248 pockthg 12283 ennnfonelemhom 12344 dsndx 12548 dsid 12549 dsslid 12550 dveflem 13287 1kp2ke3k 13565 ex-exp 13568 ex-fac 13569 012of 13835 isomninnlem 13869 trilpolemisumle 13877 iswomninnlem 13888 iswomni0 13890 ismkvnnlem 13891 |
Copyright terms: Public domain | W3C validator |