| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 | ⊢ 1 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9029 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnnn0i 9285 | 1 ⊢ 1 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 1c1 7908 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1re 8001 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-int 3885 df-inn 9019 df-n0 9278 |
| This theorem is referenced by: peano2nn0 9317 deccl 9500 10nn0 9503 numsucc 9525 numadd 9532 numaddc 9533 11multnc 9553 6p5lem 9555 6p6e12 9559 7p5e12 9562 8p4e12 9567 9p2e11 9572 9p3e12 9573 10p10e20 9580 4t4e16 9584 5t2e10 9585 5t4e20 9587 6t3e18 9590 6t4e24 9591 7t3e21 9595 7t4e28 9596 8t3e24 9601 9t3e27 9608 9t9e81 9614 nn01to3 9720 fz0to3un2pr 10227 elfzom1elp1fzo 10312 fzo0sn0fzo1 10331 fldiv4lem1div2 10431 1tonninf 10567 expn1ap0 10675 nn0expcl 10679 sqval 10723 sq10 10838 nn0opthlem1d 10846 fac2 10857 bccl 10893 hashsng 10924 1elfz0hash 10932 snopiswrd 10979 wrdred1hash 11012 bcxmas 11719 arisum 11728 geoisum1 11749 geoisum1c 11750 cvgratnnlemsumlt 11758 mertenslem2 11766 fprodnn0cl 11842 ege2le3 11901 ef4p 11924 efgt1p2 11925 efgt1p 11926 sin01gt0 11992 dvds1 12083 3dvds2dec 12096 5ndvds6 12165 bitsmod 12186 bitsinv1lem 12191 isprm5 12383 pcelnn 12563 pockthg 12599 dec5nprm 12656 dec2nprm 12657 modxp1i 12660 2exp8 12677 2exp11 12678 2exp16 12679 2expltfac 12681 ennnfonelemhom 12705 ocndx 12961 ocid 12962 basendxnocndx 12963 plendxnocndx 12964 dsndx 12965 dsid 12966 dsslid 12967 dsndxnn 12968 basendxltdsndx 12969 slotsdifdsndx 12975 unifndx 12976 unifid 12977 unifndxnn 12978 basendxltunifndx 12979 slotsdifunifndx 12982 homndx 12983 homid 12984 homslid 12985 ccondx 12986 ccoid 12987 ccoslid 12988 imasvalstrd 13020 prdsvalstrd 13021 cnfldstr 14238 dveflem 15116 plyid 15136 1sgmprm 15384 perfectlem1 15389 perfectlem2 15390 2lgslem3a 15488 2lgslem3c 15490 1kp2ke3k 15524 ex-exp 15527 ex-fac 15528 012of 15794 isomninnlem 15833 trilpolemisumle 15841 iswomninnlem 15852 iswomni0 15854 ismkvnnlem 15855 |
| Copyright terms: Public domain | W3C validator |