| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 | ⊢ 1 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9018 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnnn0i 9274 | 1 ⊢ 1 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7897 ℕ0cn0 9266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7990 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-int 3876 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: peano2nn0 9306 deccl 9488 10nn0 9491 numsucc 9513 numadd 9520 numaddc 9521 11multnc 9541 6p5lem 9543 6p6e12 9547 7p5e12 9550 8p4e12 9555 9p2e11 9560 9p3e12 9561 10p10e20 9568 4t4e16 9572 5t2e10 9573 5t4e20 9575 6t3e18 9578 6t4e24 9579 7t3e21 9583 7t4e28 9584 8t3e24 9589 9t3e27 9596 9t9e81 9602 nn01to3 9708 fz0to3un2pr 10215 elfzom1elp1fzo 10295 fzo0sn0fzo1 10314 fldiv4lem1div2 10414 1tonninf 10550 expn1ap0 10658 nn0expcl 10662 sqval 10706 sq10 10821 nn0opthlem1d 10829 fac2 10840 bccl 10876 hashsng 10907 1elfz0hash 10915 snopiswrd 10962 wrdred1hash 10995 bcxmas 11671 arisum 11680 geoisum1 11701 geoisum1c 11702 cvgratnnlemsumlt 11710 mertenslem2 11718 fprodnn0cl 11794 ege2le3 11853 ef4p 11876 efgt1p2 11877 efgt1p 11878 sin01gt0 11944 dvds1 12035 3dvds2dec 12048 5ndvds6 12117 bitsmod 12138 bitsinv1lem 12143 isprm5 12335 pcelnn 12515 pockthg 12551 dec5nprm 12608 dec2nprm 12609 modxp1i 12612 2exp8 12629 2exp11 12630 2exp16 12631 2expltfac 12633 ennnfonelemhom 12657 ocndx 12913 ocid 12914 basendxnocndx 12915 plendxnocndx 12916 dsndx 12917 dsid 12918 dsslid 12919 dsndxnn 12920 basendxltdsndx 12921 slotsdifdsndx 12927 unifndx 12928 unifid 12929 unifndxnn 12930 basendxltunifndx 12931 slotsdifunifndx 12934 homndx 12935 homid 12936 homslid 12937 ccondx 12938 ccoid 12939 ccoslid 12940 imasvalstrd 12972 prdsvalstrd 12973 cnfldstr 14190 dveflem 15046 plyid 15066 1sgmprm 15314 perfectlem1 15319 perfectlem2 15320 2lgslem3a 15418 2lgslem3c 15420 1kp2ke3k 15454 ex-exp 15457 ex-fac 15458 012of 15724 isomninnlem 15761 trilpolemisumle 15769 iswomninnlem 15780 iswomni0 15782 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |