| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 | ⊢ 8 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9224 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 1 | nnnn0i 9323 | 1 ⊢ 8 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 8c8 9113 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-n0 9316 |
| This theorem is referenced by: 8p3e11 9604 8p4e12 9605 8p5e13 9606 8p6e14 9607 8p7e15 9608 8p8e16 9609 9p9e18 9617 6t4e24 9629 7t5e35 9635 8t3e24 9639 8t4e32 9640 8t5e40 9641 8t6e48 9642 8t7e56 9643 8t8e64 9644 9t3e27 9646 9t9e81 9652 2exp7 12832 2exp11 12834 2exp16 12835 slotsdnscsi 13130 2lgslem3a 15645 2lgslem3b 15646 2lgslem3c 15647 2lgslem3d 15648 basendxltedgfndx 15684 ex-exp 15802 |
| Copyright terms: Public domain | W3C validator |