| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 | ⊢ 8 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9177 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 1 | nnnn0i 9276 | 1 ⊢ 8 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 8c8 9066 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-n0 9269 |
| This theorem is referenced by: 8p3e11 9556 8p4e12 9557 8p5e13 9558 8p6e14 9559 8p7e15 9560 8p8e16 9561 9p9e18 9569 6t4e24 9581 7t5e35 9587 8t3e24 9591 8t4e32 9592 8t5e40 9593 8t6e48 9594 8t7e56 9595 8t8e64 9596 9t3e27 9598 9t9e81 9604 2exp7 12630 2exp11 12632 2exp16 12633 slotsdnscsi 12927 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 ex-exp 15481 |
| Copyright terms: Public domain | W3C validator |