Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 8983 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 9081 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 8c8 8873 ℕ0cn0 9073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7806 ax-resscn 7807 ax-1re 7809 ax-addrcl 7812 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-5 8878 df-6 8879 df-7 8880 df-8 8881 df-n0 9074 |
This theorem is referenced by: 8p3e11 9358 8p4e12 9359 8p5e13 9360 8p6e14 9361 8p7e15 9362 8p8e16 9363 9p9e18 9371 6t4e24 9383 7t5e35 9389 8t3e24 9393 8t4e32 9394 8t5e40 9395 8t6e48 9396 8t7e56 9397 8t8e64 9398 9t3e27 9400 9t9e81 9406 ex-exp 13263 |
Copyright terms: Public domain | W3C validator |