![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 9149 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 9248 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 8c8 9039 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-n0 9241 |
This theorem is referenced by: 8p3e11 9528 8p4e12 9529 8p5e13 9530 8p6e14 9531 8p7e15 9532 8p8e16 9533 9p9e18 9541 6t4e24 9553 7t5e35 9559 8t3e24 9563 8t4e32 9564 8t5e40 9565 8t6e48 9566 8t7e56 9567 8t8e64 9568 9t3e27 9570 9t9e81 9576 slotsdnscsi 12836 ex-exp 15219 |
Copyright terms: Public domain | W3C validator |