![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 9088 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 9186 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 8c8 8978 ℕ0cn0 9178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-n0 9179 |
This theorem is referenced by: 8p3e11 9466 8p4e12 9467 8p5e13 9468 8p6e14 9469 8p7e15 9470 8p8e16 9471 9p9e18 9479 6t4e24 9491 7t5e35 9497 8t3e24 9501 8t4e32 9502 8t5e40 9503 8t6e48 9504 8t7e56 9505 8t8e64 9506 9t3e27 9508 9t9e81 9514 slotsdnscsi 12679 ex-exp 14564 |
Copyright terms: Public domain | W3C validator |