| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 | ⊢ 8 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9203 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 1 | nnnn0i 9302 | 1 ⊢ 8 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 8c8 9092 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-n0 9295 |
| This theorem is referenced by: 8p3e11 9583 8p4e12 9584 8p5e13 9585 8p6e14 9586 8p7e15 9587 8p8e16 9588 9p9e18 9596 6t4e24 9608 7t5e35 9614 8t3e24 9618 8t4e32 9619 8t5e40 9620 8t6e48 9621 8t7e56 9622 8t8e64 9623 9t3e27 9625 9t9e81 9631 2exp7 12699 2exp11 12701 2exp16 12702 slotsdnscsi 12997 2lgslem3a 15512 2lgslem3b 15513 2lgslem3c 15514 2lgslem3d 15515 basendxltedgfndx 15551 ex-exp 15596 |
| Copyright terms: Public domain | W3C validator |