ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8nn0 GIF version

Theorem 8nn0 8666
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
8nn0 8 ∈ ℕ0

Proof of Theorem 8nn0
StepHypRef Expression
1 8nn 8553 . 2 8 ∈ ℕ
21nnnn0i 8651 1 8 ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 1438  8c8 8450  0cn0 8643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-cnex 7415  ax-resscn 7416  ax-1re 7418  ax-addrcl 7421
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-5 8455  df-6 8456  df-7 8457  df-8 8458  df-n0 8644
This theorem is referenced by:  8p3e11  8926  8p4e12  8927  8p5e13  8928  8p6e14  8929  8p7e15  8930  8p8e16  8931  9p9e18  8939  6t4e24  8951  7t5e35  8957  8t3e24  8961  8t4e32  8962  8t5e40  8963  8t6e48  8964  8t7e56  8965  8t8e64  8966  9t3e27  8968  9t9e81  8974  ex-exp  11311
  Copyright terms: Public domain W3C validator