![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 9152 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 9251 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 8c8 9041 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-n0 9244 |
This theorem is referenced by: 8p3e11 9531 8p4e12 9532 8p5e13 9533 8p6e14 9534 8p7e15 9535 8p8e16 9536 9p9e18 9544 6t4e24 9556 7t5e35 9562 8t3e24 9566 8t4e32 9567 8t5e40 9568 8t6e48 9569 8t7e56 9570 8t8e64 9571 9t3e27 9573 9t9e81 9579 slotsdnscsi 12839 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 ex-exp 15289 |
Copyright terms: Public domain | W3C validator |