Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 9045 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 9143 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 8c8 8935 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-n0 9136 |
This theorem is referenced by: 8p3e11 9423 8p4e12 9424 8p5e13 9425 8p6e14 9426 8p7e15 9427 8p8e16 9428 9p9e18 9436 6t4e24 9448 7t5e35 9454 8t3e24 9458 8t4e32 9459 8t5e40 9460 8t6e48 9461 8t7e56 9462 8t8e64 9463 9t3e27 9465 9t9e81 9471 ex-exp 13762 |
Copyright terms: Public domain | W3C validator |