| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn0 | GIF version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 | ⊢ 8 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 9274 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 1 | nnnn0i 9373 | 1 ⊢ 8 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 8c8 9163 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-n0 9366 |
| This theorem is referenced by: 8p3e11 9654 8p4e12 9655 8p5e13 9656 8p6e14 9657 8p7e15 9658 8p8e16 9659 9p9e18 9667 6t4e24 9679 7t5e35 9685 8t3e24 9689 8t4e32 9690 8t5e40 9691 8t6e48 9692 8t7e56 9693 8t8e64 9694 9t3e27 9696 9t9e81 9702 2exp7 12952 2exp11 12954 2exp16 12955 slotsdnscsi 13251 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 basendxltedgfndx 15805 ex-exp 16049 |
| Copyright terms: Public domain | W3C validator |