| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 | ⊢ 2 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9268 | . 2 ⊢ 2 ∈ ℕ | |
| 2 | 1 | nnnn0i 9373 | 1 ⊢ 2 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 2c2 9157 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-n0 9366 |
| This theorem is referenced by: nn0n0n1ge2 9513 7p6e13 9651 8p3e11 9654 8p5e13 9656 9p3e12 9661 9p4e13 9662 4t3e12 9671 4t4e16 9672 5t3e15 9674 5t5e25 9676 6t3e18 9678 6t5e30 9680 7t3e21 9683 7t4e28 9684 7t5e35 9685 7t6e42 9686 7t7e49 9687 8t3e24 9689 8t4e32 9690 8t5e40 9691 9t3e27 9696 9t4e36 9697 9t8e72 9701 9t9e81 9702 decbin3 9715 2eluzge0 9766 nn01to3 9808 xnn0le2is012 10058 fzo0to42pr 10421 nn0sqcl 10783 sqmul 10818 resqcl 10824 zsqcl 10827 cu2 10855 i3 10858 i4 10859 binom3 10874 nn0opthlem1d 10937 fac3 10949 faclbnd2 10959 abssq 11587 sqabs 11588 ef4p 12200 efgt1p2 12201 efi4p 12223 ef01bndlem 12262 cos01bnd 12264 oexpneg 12383 oddge22np1 12387 isprm5 12659 pythagtriplem4 12786 oddprmdvds 12872 dec2dvds 12929 dec5dvds 12930 2exp4 12949 2exp5 12950 2exp6 12951 2exp7 12952 2exp8 12953 2exp11 12954 2exp16 12955 3exp3 12956 2expltfac 12957 basendxltdsndx 13247 dsndxnplusgndx 13249 dsndxnmulrndx 13250 slotsdnscsi 13251 dsndxntsetndx 13252 slotsdifdsndx 13253 slotsdifunifndx 13260 prdsvalstrd 13299 cnfldstr 14516 setsmsdsg 15148 dveflem 15394 tangtx 15506 2logb9irr 15639 2logb9irrap 15645 binom4 15647 mersenne 15665 lgslem1 15673 gausslemma2dlem6 15740 lgseisenlem4 15746 2lgslem1c 15763 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 1kp2ke3k 16046 ex-exp 16049 ex-fac 16050 |
| Copyright terms: Public domain | W3C validator |