| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 | ⊢ 2 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9171 | . 2 ⊢ 2 ∈ ℕ | |
| 2 | 1 | nnnn0i 9276 | 1 ⊢ 2 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 2c2 9060 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-n0 9269 |
| This theorem is referenced by: nn0n0n1ge2 9415 7p6e13 9553 8p3e11 9556 8p5e13 9558 9p3e12 9563 9p4e13 9564 4t3e12 9573 4t4e16 9574 5t3e15 9576 5t5e25 9578 6t3e18 9580 6t5e30 9582 7t3e21 9585 7t4e28 9586 7t5e35 9587 7t6e42 9588 7t7e49 9589 8t3e24 9591 8t4e32 9592 8t5e40 9593 9t3e27 9598 9t4e36 9599 9t8e72 9603 9t9e81 9604 decbin3 9617 2eluzge0 9668 nn01to3 9710 xnn0le2is012 9960 fzo0to42pr 10315 nn0sqcl 10677 sqmul 10712 resqcl 10718 zsqcl 10721 cu2 10749 i3 10752 i4 10753 binom3 10768 nn0opthlem1d 10831 fac3 10843 faclbnd2 10853 abssq 11265 sqabs 11266 ef4p 11878 efgt1p2 11879 efi4p 11901 ef01bndlem 11940 cos01bnd 11942 oexpneg 12061 oddge22np1 12065 isprm5 12337 pythagtriplem4 12464 oddprmdvds 12550 dec2dvds 12607 dec5dvds 12608 2exp4 12627 2exp5 12628 2exp6 12629 2exp7 12630 2exp8 12631 2exp11 12632 2exp16 12633 3exp3 12634 2expltfac 12635 basendxltdsndx 12923 dsndxnplusgndx 12925 dsndxnmulrndx 12926 slotsdnscsi 12927 dsndxntsetndx 12928 slotsdifdsndx 12929 slotsdifunifndx 12936 prdsvalstrd 12975 cnfldstr 14192 setsmsdsg 14824 dveflem 15070 tangtx 15182 2logb9irr 15315 2logb9irrap 15321 binom4 15323 mersenne 15341 lgslem1 15349 gausslemma2dlem6 15416 lgseisenlem4 15422 2lgslem1c 15439 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 1kp2ke3k 15478 ex-exp 15481 ex-fac 15482 |
| Copyright terms: Public domain | W3C validator |