![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 | ⊢ 2 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 9083 | . 2 ⊢ 2 ∈ ℕ | |
2 | 1 | nnnn0i 9187 | 1 ⊢ 2 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 2c2 8973 ℕ0cn0 9179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5881 df-inn 8923 df-2 8981 df-n0 9180 |
This theorem is referenced by: nn0n0n1ge2 9326 7p6e13 9464 8p3e11 9467 8p5e13 9469 9p3e12 9474 9p4e13 9475 4t3e12 9484 4t4e16 9485 5t3e15 9487 5t5e25 9489 6t3e18 9491 6t5e30 9493 7t3e21 9496 7t4e28 9497 7t5e35 9498 7t6e42 9499 7t7e49 9500 8t3e24 9502 8t4e32 9503 8t5e40 9504 9t3e27 9509 9t4e36 9510 9t8e72 9514 9t9e81 9515 decbin3 9528 2eluzge0 9578 nn01to3 9620 xnn0le2is012 9869 fzo0to42pr 10223 nn0sqcl 10550 sqmul 10585 resqcl 10591 zsqcl 10594 cu2 10622 i3 10625 i4 10626 binom3 10641 nn0opthlem1d 10703 fac3 10715 faclbnd2 10725 abssq 11093 sqabs 11094 ef4p 11705 efgt1p2 11706 efi4p 11728 ef01bndlem 11767 cos01bnd 11769 oexpneg 11885 oddge22np1 11889 isprm5 12145 pythagtriplem4 12271 oddprmdvds 12355 basendxltdsndx 12676 dsndxnplusgndx 12678 dsndxnmulrndx 12679 slotsdnscsi 12680 dsndxntsetndx 12681 slotsdifdsndx 12682 slotsdifunifndx 12689 setsmsdsg 14168 dveflem 14375 tangtx 14447 2logb9irr 14577 2logb9irrap 14583 binom4 14585 lgslem1 14589 1kp2ke3k 14664 ex-exp 14667 ex-fac 14668 |
Copyright terms: Public domain | W3C validator |