![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 | ⊢ 2 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 8577 | . 2 ⊢ 2 ∈ ℕ | |
2 | 1 | nnnn0i 8681 | 1 ⊢ 2 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 2c2 8473 ℕ0cn0 8673 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7436 ax-resscn 7437 ax-1re 7439 ax-addrcl 7442 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 df-inn 8423 df-2 8481 df-n0 8674 |
This theorem is referenced by: nn0n0n1ge2 8817 7p6e13 8954 8p3e11 8957 8p5e13 8959 9p3e12 8964 9p4e13 8965 4t3e12 8974 4t4e16 8975 5t3e15 8977 5t5e25 8979 6t3e18 8981 6t5e30 8983 7t3e21 8986 7t4e28 8987 7t5e35 8988 7t6e42 8989 7t7e49 8990 8t3e24 8992 8t4e32 8993 8t5e40 8994 9t3e27 8999 9t4e36 9000 9t8e72 9004 9t9e81 9005 decbin3 9018 2eluzge0 9063 nn01to3 9102 fzo0to42pr 9631 nn0sqcl 9982 sqmul 10017 resqcl 10022 zsqcl 10025 cu2 10053 i3 10056 i4 10057 binom3 10071 nn0opthlem1d 10128 fac3 10140 faclbnd2 10150 abssq 10514 sqabs 10515 ef4p 10984 efgt1p2 10985 efi4p 11008 ef01bndlem 11047 cos01bnd 11049 oexpneg 11155 oddge22np1 11159 1kp2ke3k 11651 ex-exp 11654 ex-fac 11655 |
Copyright terms: Public domain | W3C validator |