| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 | ⊢ 2 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9180 | . 2 ⊢ 2 ∈ ℕ | |
| 2 | 1 | nnnn0i 9285 | 1 ⊢ 2 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 2c2 9069 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-n0 9278 |
| This theorem is referenced by: nn0n0n1ge2 9425 7p6e13 9563 8p3e11 9566 8p5e13 9568 9p3e12 9573 9p4e13 9574 4t3e12 9583 4t4e16 9584 5t3e15 9586 5t5e25 9588 6t3e18 9590 6t5e30 9592 7t3e21 9595 7t4e28 9596 7t5e35 9597 7t6e42 9598 7t7e49 9599 8t3e24 9601 8t4e32 9602 8t5e40 9603 9t3e27 9608 9t4e36 9609 9t8e72 9613 9t9e81 9614 decbin3 9627 2eluzge0 9678 nn01to3 9720 xnn0le2is012 9970 fzo0to42pr 10330 nn0sqcl 10692 sqmul 10727 resqcl 10733 zsqcl 10736 cu2 10764 i3 10767 i4 10768 binom3 10783 nn0opthlem1d 10846 fac3 10858 faclbnd2 10868 abssq 11311 sqabs 11312 ef4p 11924 efgt1p2 11925 efi4p 11947 ef01bndlem 11986 cos01bnd 11988 oexpneg 12107 oddge22np1 12111 isprm5 12383 pythagtriplem4 12510 oddprmdvds 12596 dec2dvds 12653 dec5dvds 12654 2exp4 12673 2exp5 12674 2exp6 12675 2exp7 12676 2exp8 12677 2exp11 12678 2exp16 12679 3exp3 12680 2expltfac 12681 basendxltdsndx 12969 dsndxnplusgndx 12971 dsndxnmulrndx 12972 slotsdnscsi 12973 dsndxntsetndx 12974 slotsdifdsndx 12975 slotsdifunifndx 12982 prdsvalstrd 13021 cnfldstr 14238 setsmsdsg 14870 dveflem 15116 tangtx 15228 2logb9irr 15361 2logb9irrap 15367 binom4 15369 mersenne 15387 lgslem1 15395 gausslemma2dlem6 15462 lgseisenlem4 15468 2lgslem1c 15485 2lgslem3a 15488 2lgslem3b 15489 2lgslem3c 15490 2lgslem3d 15491 1kp2ke3k 15524 ex-exp 15527 ex-fac 15528 |
| Copyright terms: Public domain | W3C validator |