Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 | ⊢ 2 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 9039 | . 2 ⊢ 2 ∈ ℕ | |
2 | 1 | nnnn0i 9143 | 1 ⊢ 2 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 2c2 8929 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-n0 9136 |
This theorem is referenced by: nn0n0n1ge2 9282 7p6e13 9420 8p3e11 9423 8p5e13 9425 9p3e12 9430 9p4e13 9431 4t3e12 9440 4t4e16 9441 5t3e15 9443 5t5e25 9445 6t3e18 9447 6t5e30 9449 7t3e21 9452 7t4e28 9453 7t5e35 9454 7t6e42 9455 7t7e49 9456 8t3e24 9458 8t4e32 9459 8t5e40 9460 9t3e27 9465 9t4e36 9466 9t8e72 9470 9t9e81 9471 decbin3 9484 2eluzge0 9534 nn01to3 9576 xnn0le2is012 9823 fzo0to42pr 10176 nn0sqcl 10503 sqmul 10538 resqcl 10543 zsqcl 10546 cu2 10574 i3 10577 i4 10578 binom3 10593 nn0opthlem1d 10654 fac3 10666 faclbnd2 10676 abssq 11045 sqabs 11046 ef4p 11657 efgt1p2 11658 efi4p 11680 ef01bndlem 11719 cos01bnd 11721 oexpneg 11836 oddge22np1 11840 isprm5 12096 pythagtriplem4 12222 oddprmdvds 12306 setsmsdsg 13274 dveflem 13481 tangtx 13553 2logb9irr 13683 2logb9irrap 13689 binom4 13691 lgslem1 13695 1kp2ke3k 13759 ex-exp 13762 ex-fac 13763 |
Copyright terms: Public domain | W3C validator |