Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 | ⊢ 2 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 9014 | . 2 ⊢ 2 ∈ ℕ | |
2 | 1 | nnnn0i 9118 | 1 ⊢ 2 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 2c2 8904 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-2 8912 df-n0 9111 |
This theorem is referenced by: nn0n0n1ge2 9257 7p6e13 9395 8p3e11 9398 8p5e13 9400 9p3e12 9405 9p4e13 9406 4t3e12 9415 4t4e16 9416 5t3e15 9418 5t5e25 9420 6t3e18 9422 6t5e30 9424 7t3e21 9427 7t4e28 9428 7t5e35 9429 7t6e42 9430 7t7e49 9431 8t3e24 9433 8t4e32 9434 8t5e40 9435 9t3e27 9440 9t4e36 9441 9t8e72 9445 9t9e81 9446 decbin3 9459 2eluzge0 9509 nn01to3 9551 xnn0le2is012 9798 fzo0to42pr 10151 nn0sqcl 10478 sqmul 10513 resqcl 10518 zsqcl 10521 cu2 10549 i3 10552 i4 10553 binom3 10568 nn0opthlem1d 10629 fac3 10641 faclbnd2 10651 abssq 11019 sqabs 11020 ef4p 11631 efgt1p2 11632 efi4p 11654 ef01bndlem 11693 cos01bnd 11695 oexpneg 11810 oddge22np1 11814 isprm5 12070 pythagtriplem4 12196 oddprmdvds 12280 setsmsdsg 13080 dveflem 13287 tangtx 13359 2logb9irr 13489 2logb9irrap 13495 binom4 13497 lgslem1 13501 1kp2ke3k 13565 ex-exp 13568 ex-fac 13569 |
Copyright terms: Public domain | W3C validator |