| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2nn0 | GIF version | ||
| Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 2nn0 | ⊢ 2 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9218 | . 2 ⊢ 2 ∈ ℕ | |
| 2 | 1 | nnnn0i 9323 | 1 ⊢ 2 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 2c2 9107 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-n0 9316 |
| This theorem is referenced by: nn0n0n1ge2 9463 7p6e13 9601 8p3e11 9604 8p5e13 9606 9p3e12 9611 9p4e13 9612 4t3e12 9621 4t4e16 9622 5t3e15 9624 5t5e25 9626 6t3e18 9628 6t5e30 9630 7t3e21 9633 7t4e28 9634 7t5e35 9635 7t6e42 9636 7t7e49 9637 8t3e24 9639 8t4e32 9640 8t5e40 9641 9t3e27 9646 9t4e36 9647 9t8e72 9651 9t9e81 9652 decbin3 9665 2eluzge0 9716 nn01to3 9758 xnn0le2is012 10008 fzo0to42pr 10371 nn0sqcl 10733 sqmul 10768 resqcl 10774 zsqcl 10777 cu2 10805 i3 10808 i4 10809 binom3 10824 nn0opthlem1d 10887 fac3 10899 faclbnd2 10909 abssq 11467 sqabs 11468 ef4p 12080 efgt1p2 12081 efi4p 12103 ef01bndlem 12142 cos01bnd 12144 oexpneg 12263 oddge22np1 12267 isprm5 12539 pythagtriplem4 12666 oddprmdvds 12752 dec2dvds 12809 dec5dvds 12810 2exp4 12829 2exp5 12830 2exp6 12831 2exp7 12832 2exp8 12833 2exp11 12834 2exp16 12835 3exp3 12836 2expltfac 12837 basendxltdsndx 13126 dsndxnplusgndx 13128 dsndxnmulrndx 13129 slotsdnscsi 13130 dsndxntsetndx 13131 slotsdifdsndx 13132 slotsdifunifndx 13139 prdsvalstrd 13178 cnfldstr 14395 setsmsdsg 15027 dveflem 15273 tangtx 15385 2logb9irr 15518 2logb9irrap 15524 binom4 15526 mersenne 15544 lgslem1 15552 gausslemma2dlem6 15619 lgseisenlem4 15625 2lgslem1c 15642 2lgslem3a 15645 2lgslem3b 15646 2lgslem3c 15647 2lgslem3d 15648 1kp2ke3k 15799 ex-exp 15802 ex-fac 15803 |
| Copyright terms: Public domain | W3C validator |