Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5nn0 | GIF version |
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
5nn0 | ⊢ 5 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 9042 | . 2 ⊢ 5 ∈ ℕ | |
2 | 1 | nnnn0i 9143 | 1 ⊢ 5 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 5c5 8932 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-n0 9136 |
This theorem is referenced by: 6p6e12 9416 7p6e13 9420 8p6e14 9426 8p8e16 9428 9p6e15 9433 9p7e16 9434 5t2e10 9442 5t3e15 9443 5t4e20 9444 5t5e25 9445 6t6e36 9450 7t5e35 9454 7t6e42 9455 8t6e48 9461 8t8e64 9463 9t5e45 9467 9t6e54 9468 9t7e63 9469 ex-fac 13763 |
Copyright terms: Public domain | W3C validator |