Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5nn0 | GIF version |
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
5nn0 | ⊢ 5 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 9029 | . 2 ⊢ 5 ∈ ℕ | |
2 | 1 | nnnn0i 9130 | 1 ⊢ 5 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 5c5 8919 ℕ0cn0 9122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-n0 9123 |
This theorem is referenced by: 6p6e12 9403 7p6e13 9407 8p6e14 9413 8p8e16 9415 9p6e15 9420 9p7e16 9421 5t2e10 9429 5t3e15 9430 5t4e20 9431 5t5e25 9432 6t6e36 9437 7t5e35 9441 7t6e42 9442 8t6e48 9448 8t8e64 9450 9t5e45 9454 9t6e54 9455 9t7e63 9456 ex-fac 13722 |
Copyright terms: Public domain | W3C validator |