![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 8576 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 8679 | 1 ⊢ 3 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 3c3 8472 ℕ0cn0 8671 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7434 ax-resscn 7435 ax-1re 7437 ax-addrcl 7440 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 df-inn 8421 df-2 8479 df-3 8480 df-n0 8672 |
This theorem is referenced by: 7p4e11 8950 7p7e14 8953 8p4e12 8956 8p6e14 8958 9p4e13 8963 9p5e14 8964 4t4e16 8973 5t4e20 8976 6t4e24 8980 6t6e36 8982 7t4e28 8985 7t6e42 8987 8t4e32 8991 8t5e40 8992 9t4e36 8998 9t5e45 8999 9t7e63 9001 9t8e72 9002 4fvwrd4 9547 fldiv4p1lem1div2 9708 expnass 10056 binom3 10067 fac4 10137 4bc2eq6 10178 ef4p 10980 efi4p 11004 resin4p 11005 recos4p 11006 ef01bndlem 11043 sin01bnd 11044 sin01gt0 11048 |
Copyright terms: Public domain | W3C validator |