| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 | ⊢ 3 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9181 | . 2 ⊢ 3 ∈ ℕ | |
| 2 | 1 | nnnn0i 9285 | 1 ⊢ 3 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 3c3 9070 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-3 9078 df-n0 9278 |
| This theorem is referenced by: 7p4e11 9561 7p7e14 9564 8p4e12 9567 8p6e14 9569 9p4e13 9574 9p5e14 9575 4t4e16 9584 5t4e20 9587 6t4e24 9591 6t6e36 9593 7t4e28 9596 7t6e42 9598 8t4e32 9602 8t5e40 9603 9t4e36 9609 9t5e45 9610 9t7e63 9612 9t8e72 9613 fz0to3un2pr 10227 4fvwrd4 10244 fldiv4p1lem1div2 10429 expnass 10771 binom3 10783 fac4 10859 4bc2eq6 10900 ef4p 11924 efi4p 11947 resin4p 11948 recos4p 11949 ef01bndlem 11986 sin01bnd 11987 sin01gt0 11992 2exp5 12674 2exp6 12675 2exp8 12677 2exp11 12678 2exp16 12679 3exp3 12680 dsndxnmulrndx 12972 basendxltunifndx 12979 unifndxntsetndx 12981 slotsdifunifndx 12982 tangtx 15228 binom4 15369 gausslemma2dlem4 15459 2lgslem3b 15489 2lgslem3d 15491 |
| Copyright terms: Public domain | W3C validator |