| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 | ⊢ 3 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9172 | . 2 ⊢ 3 ∈ ℕ | |
| 2 | 1 | nnnn0i 9276 | 1 ⊢ 3 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 3c3 9061 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-n0 9269 |
| This theorem is referenced by: 7p4e11 9551 7p7e14 9554 8p4e12 9557 8p6e14 9559 9p4e13 9564 9p5e14 9565 4t4e16 9574 5t4e20 9577 6t4e24 9581 6t6e36 9583 7t4e28 9586 7t6e42 9588 8t4e32 9592 8t5e40 9593 9t4e36 9599 9t5e45 9600 9t7e63 9602 9t8e72 9603 fz0to3un2pr 10217 4fvwrd4 10234 fldiv4p1lem1div2 10414 expnass 10756 binom3 10768 fac4 10844 4bc2eq6 10885 ef4p 11878 efi4p 11901 resin4p 11902 recos4p 11903 ef01bndlem 11940 sin01bnd 11941 sin01gt0 11946 2exp5 12628 2exp6 12629 2exp8 12631 2exp11 12632 2exp16 12633 3exp3 12634 dsndxnmulrndx 12926 basendxltunifndx 12933 unifndxntsetndx 12935 slotsdifunifndx 12936 tangtx 15182 binom4 15323 gausslemma2dlem4 15413 2lgslem3b 15443 2lgslem3d 15445 |
| Copyright terms: Public domain | W3C validator |