Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 9040 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 9143 | 1 ⊢ 3 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 3c3 8930 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-n0 9136 |
This theorem is referenced by: 7p4e11 9418 7p7e14 9421 8p4e12 9424 8p6e14 9426 9p4e13 9431 9p5e14 9432 4t4e16 9441 5t4e20 9444 6t4e24 9448 6t6e36 9450 7t4e28 9453 7t6e42 9455 8t4e32 9459 8t5e40 9460 9t4e36 9466 9t5e45 9467 9t7e63 9469 9t8e72 9470 fz0to3un2pr 10079 4fvwrd4 10096 fldiv4p1lem1div2 10261 expnass 10581 binom3 10593 fac4 10667 4bc2eq6 10708 ef4p 11657 efi4p 11680 resin4p 11681 recos4p 11682 ef01bndlem 11719 sin01bnd 11720 sin01gt0 11724 tangtx 13553 binom4 13691 |
Copyright terms: Public domain | W3C validator |