Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 9015 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 9118 | 1 ⊢ 3 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 3c3 8905 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-2 8912 df-3 8913 df-n0 9111 |
This theorem is referenced by: 7p4e11 9393 7p7e14 9396 8p4e12 9399 8p6e14 9401 9p4e13 9406 9p5e14 9407 4t4e16 9416 5t4e20 9419 6t4e24 9423 6t6e36 9425 7t4e28 9428 7t6e42 9430 8t4e32 9434 8t5e40 9435 9t4e36 9441 9t5e45 9442 9t7e63 9444 9t8e72 9445 fz0to3un2pr 10054 4fvwrd4 10071 fldiv4p1lem1div2 10236 expnass 10556 binom3 10568 fac4 10642 4bc2eq6 10683 ef4p 11631 efi4p 11654 resin4p 11655 recos4p 11656 ef01bndlem 11693 sin01bnd 11694 sin01gt0 11698 tangtx 13359 binom4 13497 |
Copyright terms: Public domain | W3C validator |