| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 | ⊢ 3 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9219 | . 2 ⊢ 3 ∈ ℕ | |
| 2 | 1 | nnnn0i 9323 | 1 ⊢ 3 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 3c3 9108 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-n0 9316 |
| This theorem is referenced by: 7p4e11 9599 7p7e14 9602 8p4e12 9605 8p6e14 9607 9p4e13 9612 9p5e14 9613 4t4e16 9622 5t4e20 9625 6t4e24 9629 6t6e36 9631 7t4e28 9634 7t6e42 9636 8t4e32 9640 8t5e40 9641 9t4e36 9647 9t5e45 9648 9t7e63 9650 9t8e72 9651 fz0to3un2pr 10265 4fvwrd4 10282 fldiv4p1lem1div2 10470 expnass 10812 binom3 10824 fac4 10900 4bc2eq6 10941 ef4p 12080 efi4p 12103 resin4p 12104 recos4p 12105 ef01bndlem 12142 sin01bnd 12143 sin01gt0 12148 2exp5 12830 2exp6 12831 2exp8 12833 2exp11 12834 2exp16 12835 3exp3 12836 dsndxnmulrndx 13129 basendxltunifndx 13136 unifndxntsetndx 13138 slotsdifunifndx 13139 tangtx 15385 binom4 15526 gausslemma2dlem4 15616 2lgslem3b 15646 2lgslem3d 15648 |
| Copyright terms: Public domain | W3C validator |