| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 | ⊢ 3 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 9269 | . 2 ⊢ 3 ∈ ℕ | |
| 2 | 1 | nnnn0i 9373 | 1 ⊢ 3 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 3c3 9158 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-n0 9366 |
| This theorem is referenced by: 7p4e11 9649 7p7e14 9652 8p4e12 9655 8p6e14 9657 9p4e13 9662 9p5e14 9663 4t4e16 9672 5t4e20 9675 6t4e24 9679 6t6e36 9681 7t4e28 9684 7t6e42 9686 8t4e32 9690 8t5e40 9691 9t4e36 9697 9t5e45 9698 9t7e63 9700 9t8e72 9701 fz0to3un2pr 10315 4fvwrd4 10332 fldiv4p1lem1div2 10520 expnass 10862 binom3 10874 fac4 10950 4bc2eq6 10991 ef4p 12200 efi4p 12223 resin4p 12224 recos4p 12225 ef01bndlem 12262 sin01bnd 12263 sin01gt0 12268 2exp5 12950 2exp6 12951 2exp8 12953 2exp11 12954 2exp16 12955 3exp3 12956 dsndxnmulrndx 13250 basendxltunifndx 13257 unifndxntsetndx 13259 slotsdifunifndx 13260 tangtx 15506 binom4 15647 gausslemma2dlem4 15737 2lgslem3b 15767 2lgslem3d 15769 |
| Copyright terms: Public domain | W3C validator |