| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9nn0 | GIF version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 | ⊢ 9 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 9178 | . 2 ⊢ 9 ∈ ℕ | |
| 2 | 1 | nnnn0i 9276 | 1 ⊢ 9 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 9c9 9067 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 |
| This theorem is referenced by: deccl 9490 le9lt10 9502 decsucc 9516 9p2e11 9562 9p3e12 9563 9p4e13 9564 9p5e14 9565 9p6e15 9566 9p7e16 9567 9p8e17 9568 9p9e18 9569 9t3e27 9598 9t4e36 9599 9t5e45 9600 9t6e54 9601 9t7e63 9602 9t8e72 9603 9t9e81 9604 sq10e99m1 10824 3dvds2dec 12050 2exp8 12631 dsndxntsetndx 12928 unifndxntsetndx 12935 setsmsdsg 14824 |
| Copyright terms: Public domain | W3C validator |