![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9nn0 | GIF version |
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9nn0 | ⊢ 9 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 8740 | . 2 ⊢ 9 ∈ ℕ | |
2 | 1 | nnnn0i 8837 | 1 ⊢ 9 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1448 9c9 8636 ℕ0cn0 8829 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-cnex 7586 ax-resscn 7587 ax-1re 7589 ax-addrcl 7592 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-iota 5024 df-fv 5067 df-ov 5709 df-inn 8579 df-2 8637 df-3 8638 df-4 8639 df-5 8640 df-6 8641 df-7 8642 df-8 8643 df-9 8644 df-n0 8830 |
This theorem is referenced by: deccl 9048 le9lt10 9060 decsucc 9074 9p2e11 9120 9p3e12 9121 9p4e13 9122 9p5e14 9123 9p6e15 9124 9p7e16 9125 9p8e17 9126 9p9e18 9127 9t3e27 9156 9t4e36 9157 9t5e45 9158 9t6e54 9159 9t7e63 9160 9t8e72 9161 9t9e81 9162 sq10e99m1 10301 3dvds2dec 11358 setsmsdsg 12408 |
Copyright terms: Public domain | W3C validator |