| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9nn0 | GIF version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 | ⊢ 9 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 9225 | . 2 ⊢ 9 ∈ ℕ | |
| 2 | 1 | nnnn0i 9323 | 1 ⊢ 9 ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 9c9 9114 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 |
| This theorem is referenced by: deccl 9538 le9lt10 9550 decsucc 9564 9p2e11 9610 9p3e12 9611 9p4e13 9612 9p5e14 9613 9p6e15 9614 9p7e16 9615 9p8e17 9616 9p9e18 9617 9t3e27 9646 9t4e36 9647 9t5e45 9648 9t6e54 9649 9t7e63 9650 9t8e72 9651 9t9e81 9652 sq10e99m1 10880 3dvds2dec 12252 2exp8 12833 dsndxntsetndx 13131 unifndxntsetndx 13138 setsmsdsg 15027 |
| Copyright terms: Public domain | W3C validator |