Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9nn0 | GIF version |
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9nn0 | ⊢ 9 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 9025 | . 2 ⊢ 9 ∈ ℕ | |
2 | 1 | nnnn0i 9122 | 1 ⊢ 9 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 9c9 8915 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 |
This theorem is referenced by: deccl 9336 le9lt10 9348 decsucc 9362 9p2e11 9408 9p3e12 9409 9p4e13 9410 9p5e14 9411 9p6e15 9412 9p7e16 9413 9p8e17 9414 9p9e18 9415 9t3e27 9444 9t4e36 9445 9t5e45 9446 9t6e54 9447 9t7e63 9448 9t8e72 9449 9t9e81 9450 sq10e99m1 10626 3dvds2dec 11803 setsmsdsg 13120 |
Copyright terms: Public domain | W3C validator |