![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ubioog | GIF version |
Description: An open interval does not contain its right endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.) |
Ref | Expression |
---|---|
ubioog | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltnr 9311 | . . . 4 ⊢ (𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵) | |
2 | simp3 946 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵) → 𝐵 < 𝐵) | |
3 | 1, 2 | nsyl 594 | . . 3 ⊢ (𝐵 ∈ ℝ* → ¬ (𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵)) |
4 | 3 | adantl 272 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ (𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵)) |
5 | elioo1 9390 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,)𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵))) | |
6 | 4, 5 | mtbird 634 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∧ w3a 925 ∈ wcel 1439 class class class wbr 3851 (class class class)co 5666 ℝ*cxr 7582 < clt 7583 (,)cioo 9367 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-pre-ltirr 7518 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-ioo 9371 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |