| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ubioog | GIF version | ||
| Description: An open interval does not contain its right endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| ubioog | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltnr 9908 | . . . 4 ⊢ (𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵) | |
| 2 | simp3 1002 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵) → 𝐵 < 𝐵) | |
| 3 | 1, 2 | nsyl 629 | . . 3 ⊢ (𝐵 ∈ ℝ* → ¬ (𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵)) |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ (𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵)) |
| 5 | elioo1 10040 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,)𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ∧ 𝐵 < 𝐵))) | |
| 6 | 4, 5 | mtbird 675 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℝ*cxr 8113 < clt 8114 (,)cioo 10017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-pre-ltirr 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-ioo 10021 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |