Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lbioog | GIF version |
Description: An open interval does not contain its left endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.) |
Ref | Expression |
---|---|
lbioog | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 ∈ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltnr 9736 | . . . 4 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | |
2 | simp2 993 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 𝐴 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐴) | |
3 | 1, 2 | nsyl 623 | . . 3 ⊢ (𝐴 ∈ ℝ* → ¬ (𝐴 ∈ ℝ* ∧ 𝐴 < 𝐴 ∧ 𝐴 < 𝐵)) |
4 | 3 | adantr 274 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ (𝐴 ∈ ℝ* ∧ 𝐴 < 𝐴 ∧ 𝐴 < 𝐵)) |
5 | elioo1 9868 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴(,)𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 < 𝐴 ∧ 𝐴 < 𝐵))) | |
6 | 4, 5 | mtbird 668 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 ∈ (𝐴(,)𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝ*cxr 7953 < clt 7954 (,)cioo 9845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-ioo 9849 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |