ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omv2 GIF version

Theorem omv2 6532
Description: Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
omv2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem omv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 omfnex 6516 . . . 4 (𝐴 ∈ On → (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V)
2 0elon 4428 . . . . 5 ∅ ∈ On
3 rdgival 6449 . . . . 5 (((𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V ∧ ∅ ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ 𝑥𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))))
42, 3mp3an2 1336 . . . 4 (((𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ 𝑥𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))))
51, 4sylan 283 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ 𝑥𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))))
6 omv 6522 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵))
7 onelon 4420 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 omexg 6518 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ V)
9 omcl 6528 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On)
10 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
11 oacl 6527 . . . . . . . . . 10 (((𝐴 ·o 𝑥) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) ∈ On)
129, 10, 11syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) ∈ On)
13 oveq1 5932 . . . . . . . . . 10 (𝑦 = (𝐴 ·o 𝑥) → (𝑦 +o 𝐴) = ((𝐴 ·o 𝑥) +o 𝐴))
14 eqid 2196 . . . . . . . . . 10 (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) = (𝑦 ∈ V ↦ (𝑦 +o 𝐴))
1513, 14fvmptg 5640 . . . . . . . . 9 (((𝐴 ·o 𝑥) ∈ V ∧ ((𝐴 ·o 𝑥) +o 𝐴) ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝐴 ·o 𝑥) +o 𝐴))
168, 12, 15syl2anc 411 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝐴 ·o 𝑥) +o 𝐴))
17 omv 6522 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
1817fveq2d 5565 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
1916, 18eqtr3d 2231 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
207, 19sylan2 286 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
2120anassrs 400 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
2221iuneq2dv 3938 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) = 𝑥𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
2322uneq2d 3318 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∪ 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = (∅ ∪ 𝑥𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))))
245, 6, 233eqtr4d 2239 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (∅ ∪ 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴)))
25 uncom 3308 . . 3 (∅ ∪ 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ∅)
26 un0 3485 . . 3 ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ∅) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴)
2725, 26eqtri 2217 . 2 (∅ ∪ 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴)
2824, 27eqtrdi 2245 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  c0 3451   ciun 3917  cmpt 4095  Oncon0 4399   Fn wfn 5254  cfv 5259  (class class class)co 5925  reccrdg 6436   +o coa 6480   ·o comu 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488
This theorem is referenced by:  omsuc  6539
  Copyright terms: Public domain W3C validator