Step | Hyp | Ref
| Expression |
1 | | omfnex 6440 |
. . . 4
⊢ (𝐴 ∈ On → (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V) |
2 | | 0elon 4386 |
. . . . 5
⊢ ∅
∈ On |
3 | | rdgival 6373 |
. . . . 5
⊢ (((𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V ∧ ∅ ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
4 | 2, 3 | mp3an2 1325 |
. . . 4
⊢ (((𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
5 | 1, 4 | sylan 283 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
6 | | omv 6446 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵)) |
7 | | onelon 4378 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
8 | | omexg 6442 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ V) |
9 | | omcl 6452 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
10 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → 𝐴 ∈ On) |
11 | | oacl 6451 |
. . . . . . . . . 10
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) ∈ On) |
12 | 9, 10, 11 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) ∈ On) |
13 | | oveq1 5872 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐴 ·o 𝑥) → (𝑦 +o 𝐴) = ((𝐴 ·o 𝑥) +o 𝐴)) |
14 | | eqid 2175 |
. . . . . . . . . 10
⊢ (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) = (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) |
15 | 13, 14 | fvmptg 5584 |
. . . . . . . . 9
⊢ (((𝐴 ·o 𝑥) ∈ V ∧ ((𝐴 ·o 𝑥) +o 𝐴) ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝐴 ·o 𝑥) +o 𝐴)) |
16 | 8, 12, 15 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝐴 ·o 𝑥) +o 𝐴)) |
17 | | omv 6446 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) |
18 | 17 | fveq2d 5511 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
19 | 16, 18 | eqtr3d 2210 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
20 | 7, 19 | sylan2 286 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
21 | 20 | anassrs 400 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ 𝐵) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
22 | 21 | iuneq2dv 3903 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) = ∪
𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
23 | 22 | uneq2d 3287 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅
∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
24 | 5, 6, 23 | 3eqtr4d 2218 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴))) |
25 | | uncom 3277 |
. . 3
⊢ (∅
∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = (∪
𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ∅) |
26 | | un0 3454 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ∅) = ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) |
27 | 25, 26 | eqtri 2196 |
. 2
⊢ (∅
∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = ∪
𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) |
28 | 24, 27 | eqtrdi 2224 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) |