Step | Hyp | Ref
| Expression |
1 | | omfnex 6428 |
. . . 4
⊢ (𝐴 ∈ On → (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V) |
2 | | 0elon 4377 |
. . . . 5
⊢ ∅
∈ On |
3 | | rdgival 6361 |
. . . . 5
⊢ (((𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V ∧ ∅ ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
4 | 2, 3 | mp3an2 1320 |
. . . 4
⊢ (((𝑦 ∈ V ↦ (𝑦 +o 𝐴)) Fn V ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
5 | 1, 4 | sylan 281 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
6 | | omv 6434 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵)) |
7 | | onelon 4369 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
8 | | omexg 6430 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ V) |
9 | | omcl 6440 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
10 | | simpl 108 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → 𝐴 ∈ On) |
11 | | oacl 6439 |
. . . . . . . . . 10
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) ∈ On) |
12 | 9, 10, 11 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) ∈ On) |
13 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐴 ·o 𝑥) → (𝑦 +o 𝐴) = ((𝐴 ·o 𝑥) +o 𝐴)) |
14 | | eqid 2170 |
. . . . . . . . . 10
⊢ (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) = (𝑦 ∈ V ↦ (𝑦 +o 𝐴)) |
15 | 13, 14 | fvmptg 5572 |
. . . . . . . . 9
⊢ (((𝐴 ·o 𝑥) ∈ V ∧ ((𝐴 ·o 𝑥) +o 𝐴) ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝐴 ·o 𝑥) +o 𝐴)) |
16 | 8, 12, 15 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝐴 ·o 𝑥) +o 𝐴)) |
17 | | omv 6434 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) |
18 | 17 | fveq2d 5500 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(𝐴 ·o 𝑥)) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
19 | 16, 18 | eqtr3d 2205 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
20 | 7, 19 | sylan2 284 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
21 | 20 | anassrs 398 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ 𝐵) → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
22 | 21 | iuneq2dv 3894 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) = ∪
𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
23 | 22 | uneq2d 3281 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅
∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝑦 ∈ V ↦ (𝑦 +o 𝐴))‘(rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))) |
24 | 5, 6, 23 | 3eqtr4d 2213 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (∅ ∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴))) |
25 | | uncom 3271 |
. . 3
⊢ (∅
∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = (∪
𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ∅) |
26 | | un0 3448 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ∅) = ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) |
27 | 25, 26 | eqtri 2191 |
. 2
⊢ (∅
∪ ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) = ∪
𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴) |
28 | 24, 27 | eqtrdi 2219 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 ((𝐴 ·o 𝑥) +o 𝐴)) |