ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem1 GIF version

Theorem 1arithlem1 12504
Description: Lemma for 1arith 12508. (Contributed by Mario Carneiro, 30-May-2014.)
Hypothesis
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
1arithlem1 (𝑁 ∈ ℕ → (𝑀𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)))
Distinct variable group:   𝑛,𝑝,𝑁
Allowed substitution hints:   𝑀(𝑛,𝑝)

Proof of Theorem 1arithlem1
StepHypRef Expression
1 oveq2 5927 . . 3 (𝑛 = 𝑁 → (𝑝 pCnt 𝑛) = (𝑝 pCnt 𝑁))
21mpteq2dv 4121 . 2 (𝑛 = 𝑁 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)))
3 1arith.1 . 2 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
4 prmex 12254 . . 3 ℙ ∈ V
54mptex 5785 . 2 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)) ∈ V
62, 3, 5fvmpt 5635 1 (𝑁 ∈ ℕ → (𝑀𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cmpt 4091  cfv 5255  (class class class)co 5919  cn 8984  cprime 12248   pCnt cpc 12425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-inn 8985  df-prm 12249
This theorem is referenced by:  1arithlem2  12505  1arithlem3  12506
  Copyright terms: Public domain W3C validator