ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsn GIF version

Theorem cnvsn 5165
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
cnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvsn
StepHypRef Expression
1 cnvcnvsn 5159 . 2 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
2 cnvsn.2 . . . 4 𝐵 ∈ V
3 cnvsn.1 . . . 4 𝐴 ∈ V
42, 3relsnop 4781 . . 3 Rel {⟨𝐵, 𝐴⟩}
5 dfrel2 5133 . . 3 (Rel {⟨𝐵, 𝐴⟩} ↔ {⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩})
64, 5mpbi 145 . 2 {⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩}
71, 6eqtr3i 2228 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  Vcvv 2772  {csn 3633  cop 3636  ccnv 4674  Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683
This theorem is referenced by:  op2ndb  5166  cnvsng  5168  f1osn  5562  xnn0nnen  10582
  Copyright terms: Public domain W3C validator