| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvsn | GIF version | ||
| Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| cnvsn | ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnvsn 5159 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
| 2 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | 2, 3 | relsnop 4781 | . . 3 ⊢ Rel {〈𝐵, 𝐴〉} |
| 5 | dfrel2 5133 | . . 3 ⊢ (Rel {〈𝐵, 𝐴〉} ↔ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉}) | |
| 6 | 4, 5 | mpbi 145 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉} |
| 7 | 1, 6 | eqtr3i 2228 | 1 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 Vcvv 2772 {csn 3633 〈cop 3636 ◡ccnv 4674 Rel wrel 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 |
| This theorem is referenced by: op2ndb 5166 cnvsng 5168 f1osn 5562 xnn0nnen 10582 |
| Copyright terms: Public domain | W3C validator |