Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvsn | GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
cnvsn | ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvsn 5097 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
2 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | relsnop 4726 | . . 3 ⊢ Rel {〈𝐵, 𝐴〉} |
5 | dfrel2 5071 | . . 3 ⊢ (Rel {〈𝐵, 𝐴〉} ↔ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉}) | |
6 | 4, 5 | mpbi 145 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉} |
7 | 1, 6 | eqtr3i 2198 | 1 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 Vcvv 2735 {csn 3589 〈cop 3592 ◡ccnv 4619 Rel wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 |
This theorem is referenced by: op2ndb 5104 cnvsng 5106 f1osn 5493 |
Copyright terms: Public domain | W3C validator |