ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdisj GIF version

Theorem resdisj 5156
Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resdisj ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)

Proof of Theorem resdisj
StepHypRef Expression
1 resres 5016 . 2 ((𝐶𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴𝐵))
2 reseq2 4999 . . 3 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = (𝐶 ↾ ∅))
3 res0 5008 . . 3 (𝐶 ↾ ∅) = ∅
42, 3eqtrdi 2278 . 2 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = ∅)
51, 4eqtrid 2274 1 ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cin 3196  c0 3491  cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724  df-rel 4725  df-res 4730
This theorem is referenced by:  fvsnun1  5835
  Copyright terms: Public domain W3C validator