| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdisj | GIF version | ||
| Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resdisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 4958 | . 2 ⊢ ((𝐶 ↾ 𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴 ∩ 𝐵)) | |
| 2 | reseq2 4941 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = (𝐶 ↾ ∅)) | |
| 3 | res0 4950 | . . 3 ⊢ (𝐶 ↾ ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2245 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = ∅) |
| 5 | 1, 4 | eqtrid 2241 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∩ cin 3156 ∅c0 3450 ↾ cres 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-rel 4670 df-res 4675 |
| This theorem is referenced by: fvsnun1 5759 |
| Copyright terms: Public domain | W3C validator |