| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdisj | GIF version | ||
| Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resdisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 5016 | . 2 ⊢ ((𝐶 ↾ 𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴 ∩ 𝐵)) | |
| 2 | reseq2 4999 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = (𝐶 ↾ ∅)) | |
| 3 | res0 5008 | . . 3 ⊢ (𝐶 ↾ ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2278 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = ∅) |
| 5 | 1, 4 | eqtrid 2274 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∩ cin 3196 ∅c0 3491 ↾ cres 4720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 df-rel 4725 df-res 4730 |
| This theorem is referenced by: fvsnun1 5835 |
| Copyright terms: Public domain | W3C validator |