| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdisj | GIF version | ||
| Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resdisj | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres 4968 | . 2 ⊢ ((𝐶 ↾ 𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴 ∩ 𝐵)) | |
| 2 | reseq2 4951 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = (𝐶 ↾ ∅)) | |
| 3 | res0 4960 | . . 3 ⊢ (𝐶 ↾ ∅) = ∅ | |
| 4 | 2, 3 | eqtrdi 2253 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ↾ (𝐴 ∩ 𝐵)) = ∅) |
| 5 | 1, 4 | eqtrid 2249 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∩ cin 3164 ∅c0 3459 ↾ cres 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4679 df-rel 4680 df-res 4685 |
| This theorem is referenced by: fvsnun1 5771 |
| Copyright terms: Public domain | W3C validator |