ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdisj GIF version

Theorem resdisj 5032
Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resdisj ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)

Proof of Theorem resdisj
StepHypRef Expression
1 resres 4896 . 2 ((𝐶𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴𝐵))
2 reseq2 4879 . . 3 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = (𝐶 ↾ ∅))
3 res0 4888 . . 3 (𝐶 ↾ ∅) = ∅
42, 3eqtrdi 2215 . 2 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = ∅)
51, 4syl5eq 2211 1 ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cin 3115  c0 3409  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  fvsnun1  5682
  Copyright terms: Public domain W3C validator