![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlemiex | GIF version |
Description: Lemma for tfrlemi1 6335. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
tfrlemi1.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))} |
tfrlemi1.4 | ⊢ (𝜑 → 𝑥 ∈ On) |
tfrlemi1.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfrlemiex | ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemisucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
3 | tfrlemi1.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {⟨𝑧, (𝐹‘𝑔)⟩}))} | |
4 | tfrlemi1.4 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ On) | |
5 | tfrlemi1.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) | |
6 | 1, 2, 3, 4, 5 | tfrlemibex 6332 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | uniexg 4441 | . . 3 ⊢ (𝐵 ∈ V → ∪ 𝐵 ∈ V) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
9 | 1, 2, 3, 4, 5 | tfrlemibfn 6331 | . . 3 ⊢ (𝜑 → ∪ 𝐵 Fn 𝑥) |
10 | 1, 2, 3, 4, 5 | tfrlemiubacc 6333 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) |
11 | 9, 10 | jca 306 | . 2 ⊢ (𝜑 → (∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
12 | fneq1 5306 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 Fn 𝑥 ↔ ∪ 𝐵 Fn 𝑥)) | |
13 | fveq1 5516 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝑓‘𝑢) = (∪ 𝐵‘𝑢)) | |
14 | reseq1 4903 | . . . . . . 7 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑢)) | |
15 | 14 | fveq2d 5521 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝐹‘(𝑓 ↾ 𝑢)) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) |
16 | 13, 15 | eqeq12d 2192 | . . . . 5 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
17 | 16 | ralbidv 2477 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
18 | 12, 17 | anbi12d 473 | . . 3 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢))) ↔ (∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))))) |
19 | 18 | spcegv 2827 | . 2 ⊢ (∪ 𝐵 ∈ V → ((∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢))))) |
20 | 8, 11, 19 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 Vcvv 2739 ∪ cun 3129 {csn 3594 ⟨cop 3597 ∪ cuni 3811 Oncon0 4365 ↾ cres 4630 Fun wfun 5212 Fn wfn 5213 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-recs 6308 |
This theorem is referenced by: tfrlemi1 6335 |
Copyright terms: Public domain | W3C validator |