ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiex GIF version

Theorem tfrlemiex 6386
Description: Lemma for tfrlemi1 6387. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemiex (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Distinct variable groups:   𝑓,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑢,𝐵,𝑤,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemiex
StepHypRef Expression
1 tfrlemisucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . 4 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . 4 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . 4 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibex 6384 . . 3 (𝜑𝐵 ∈ V)
7 uniexg 4471 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
86, 7syl 14 . 2 (𝜑 𝐵 ∈ V)
91, 2, 3, 4, 5tfrlemibfn 6383 . . 3 (𝜑 𝐵 Fn 𝑥)
101, 2, 3, 4, 5tfrlemiubacc 6385 . . 3 (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
119, 10jca 306 . 2 (𝜑 → ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
12 fneq1 5343 . . . 4 (𝑓 = 𝐵 → (𝑓 Fn 𝑥 𝐵 Fn 𝑥))
13 fveq1 5554 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
14 reseq1 4937 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1514fveq2d 5559 . . . . . 6 (𝑓 = 𝐵 → (𝐹‘(𝑓𝑢)) = (𝐹‘( 𝐵𝑢)))
1613, 15eqeq12d 2208 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1716ralbidv 2494 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1812, 17anbi12d 473 . . 3 (𝑓 = 𝐵 → ((𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))) ↔ ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))))
1918spcegv 2849 . 2 ( 𝐵 ∈ V → (( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)))))
208, 11, 19sylc 62 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wal 1362   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  cun 3152  {csn 3619  cop 3622   cuni 3836  Oncon0 4395  cres 4662  Fun wfun 5249   Fn wfn 5250  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6360
This theorem is referenced by:  tfrlemi1  6387
  Copyright terms: Public domain W3C validator