![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlemiex | GIF version |
Description: Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
tfrlemi1.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} |
tfrlemi1.4 | ⊢ (𝜑 → 𝑥 ∈ On) |
tfrlemi1.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfrlemiex | ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemisucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
3 | tfrlemi1.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} | |
4 | tfrlemi1.4 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ On) | |
5 | tfrlemi1.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) | |
6 | 1, 2, 3, 4, 5 | tfrlemibex 6382 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | uniexg 4470 | . . 3 ⊢ (𝐵 ∈ V → ∪ 𝐵 ∈ V) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
9 | 1, 2, 3, 4, 5 | tfrlemibfn 6381 | . . 3 ⊢ (𝜑 → ∪ 𝐵 Fn 𝑥) |
10 | 1, 2, 3, 4, 5 | tfrlemiubacc 6383 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) |
11 | 9, 10 | jca 306 | . 2 ⊢ (𝜑 → (∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
12 | fneq1 5342 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 Fn 𝑥 ↔ ∪ 𝐵 Fn 𝑥)) | |
13 | fveq1 5553 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝑓‘𝑢) = (∪ 𝐵‘𝑢)) | |
14 | reseq1 4936 | . . . . . . 7 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑢)) | |
15 | 14 | fveq2d 5558 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝐹‘(𝑓 ↾ 𝑢)) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) |
16 | 13, 15 | eqeq12d 2208 | . . . . 5 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
17 | 16 | ralbidv 2494 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
18 | 12, 17 | anbi12d 473 | . . 3 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢))) ↔ (∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))))) |
19 | 18 | spcegv 2848 | . 2 ⊢ (∪ 𝐵 ∈ V → ((∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢))))) |
20 | 8, 11, 19 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ∪ cun 3151 {csn 3618 〈cop 3621 ∪ cuni 3835 Oncon0 4394 ↾ cres 4661 Fun wfun 5248 Fn wfn 5249 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-recs 6358 |
This theorem is referenced by: tfrlemi1 6385 |
Copyright terms: Public domain | W3C validator |