| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemiex | GIF version | ||
| Description: Lemma for tfrlemi1 6399. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
| tfrlemi1.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} |
| tfrlemi1.4 | ⊢ (𝜑 → 𝑥 ∈ On) |
| tfrlemi1.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
| Ref | Expression |
|---|---|
| tfrlemiex | ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
| 3 | tfrlemi1.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} | |
| 4 | tfrlemi1.4 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ On) | |
| 5 | tfrlemi1.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) | |
| 6 | 1, 2, 3, 4, 5 | tfrlemibex 6396 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 7 | uniexg 4475 | . . 3 ⊢ (𝐵 ∈ V → ∪ 𝐵 ∈ V) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
| 9 | 1, 2, 3, 4, 5 | tfrlemibfn 6395 | . . 3 ⊢ (𝜑 → ∪ 𝐵 Fn 𝑥) |
| 10 | 1, 2, 3, 4, 5 | tfrlemiubacc 6397 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) |
| 11 | 9, 10 | jca 306 | . 2 ⊢ (𝜑 → (∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
| 12 | fneq1 5347 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 Fn 𝑥 ↔ ∪ 𝐵 Fn 𝑥)) | |
| 13 | fveq1 5560 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝑓‘𝑢) = (∪ 𝐵‘𝑢)) | |
| 14 | reseq1 4941 | . . . . . . 7 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑢)) | |
| 15 | 14 | fveq2d 5565 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝐹‘(𝑓 ↾ 𝑢)) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) |
| 16 | 13, 15 | eqeq12d 2211 | . . . . 5 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
| 17 | 16 | ralbidv 2497 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)))) |
| 18 | 12, 17 | anbi12d 473 | . . 3 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢))) ↔ (∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))))) |
| 19 | 18 | spcegv 2852 | . 2 ⊢ (∪ 𝐵 ∈ V → ((∪ 𝐵 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢))))) |
| 20 | 8, 11, 19 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ∪ cun 3155 {csn 3623 〈cop 3626 ∪ cuni 3840 Oncon0 4399 ↾ cres 4666 Fun wfun 5253 Fn wfn 5254 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-recs 6372 |
| This theorem is referenced by: tfrlemi1 6399 |
| Copyright terms: Public domain | W3C validator |