ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiex GIF version

Theorem tfrlemiex 6334
Description: Lemma for tfrlemi1 6335. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemiex (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Distinct variable groups:   𝑓,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑢,𝐵,𝑤,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemiex
StepHypRef Expression
1 tfrlemisucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . 4 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . 4 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . 4 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibex 6332 . . 3 (𝜑𝐵 ∈ V)
7 uniexg 4441 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
86, 7syl 14 . 2 (𝜑 𝐵 ∈ V)
91, 2, 3, 4, 5tfrlemibfn 6331 . . 3 (𝜑 𝐵 Fn 𝑥)
101, 2, 3, 4, 5tfrlemiubacc 6333 . . 3 (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
119, 10jca 306 . 2 (𝜑 → ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
12 fneq1 5306 . . . 4 (𝑓 = 𝐵 → (𝑓 Fn 𝑥 𝐵 Fn 𝑥))
13 fveq1 5516 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
14 reseq1 4903 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1514fveq2d 5521 . . . . . 6 (𝑓 = 𝐵 → (𝐹‘(𝑓𝑢)) = (𝐹‘( 𝐵𝑢)))
1613, 15eqeq12d 2192 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1716ralbidv 2477 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1812, 17anbi12d 473 . . 3 (𝑓 = 𝐵 → ((𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))) ↔ ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))))
1918spcegv 2827 . 2 ( 𝐵 ∈ V → (( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)))))
208, 11, 19sylc 62 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wal 1351   = wceq 1353  wex 1492  wcel 2148  {cab 2163  wral 2455  wrex 2456  Vcvv 2739  cun 3129  {csn 3594  cop 3597   cuni 3811  Oncon0 4365  cres 4630  Fun wfun 5212   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-recs 6308
This theorem is referenced by:  tfrlemi1  6335
  Copyright terms: Public domain W3C validator