ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiex GIF version

Theorem tfrlemiex 6477
Description: Lemma for tfrlemi1 6478. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemiex (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Distinct variable groups:   𝑓,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑢,𝐵,𝑤,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemiex
StepHypRef Expression
1 tfrlemisucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . 4 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . 4 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . 4 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibex 6475 . . 3 (𝜑𝐵 ∈ V)
7 uniexg 4530 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
86, 7syl 14 . 2 (𝜑 𝐵 ∈ V)
91, 2, 3, 4, 5tfrlemibfn 6474 . . 3 (𝜑 𝐵 Fn 𝑥)
101, 2, 3, 4, 5tfrlemiubacc 6476 . . 3 (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
119, 10jca 306 . 2 (𝜑 → ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
12 fneq1 5409 . . . 4 (𝑓 = 𝐵 → (𝑓 Fn 𝑥 𝐵 Fn 𝑥))
13 fveq1 5626 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
14 reseq1 4999 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1514fveq2d 5631 . . . . . 6 (𝑓 = 𝐵 → (𝐹‘(𝑓𝑢)) = (𝐹‘( 𝐵𝑢)))
1613, 15eqeq12d 2244 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1716ralbidv 2530 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)) ↔ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))))
1812, 17anbi12d 473 . . 3 (𝑓 = 𝐵 → ((𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))) ↔ ( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))))
1918spcegv 2891 . 2 ( 𝐵 ∈ V → (( 𝐵 Fn 𝑥 ∧ ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢))) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢)))))
208, 11, 19sylc 62 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢𝑥 (𝑓𝑢) = (𝐹‘(𝑓𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wal 1393   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  {csn 3666  cop 3669   cuni 3888  Oncon0 4454  cres 4721  Fun wfun 5312   Fn wfn 5313  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-recs 6451
This theorem is referenced by:  tfrlemi1  6478
  Copyright terms: Public domain W3C validator