ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr GIF version

Theorem lmbr 13752
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 βŠ† (β„‚ Γ— 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 13729. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmbr.2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
Assertion
Ref Expression
lmbr (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’))))
Distinct variable groups:   𝑦,𝑒,𝐹   𝑒,𝐽,𝑦   πœ‘,𝑒   𝑒,𝑃   𝑒,𝑋,𝑦
Allowed substitution hints:   πœ‘(𝑦)   𝑃(𝑦)

Proof of Theorem lmbr
Dummy variables 𝑓 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . . 4 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 lmfval 13731 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (β‡π‘‘β€˜π½) = {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
31, 2syl 14 . . 3 (πœ‘ β†’ (β‡π‘‘β€˜π½) = {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
43breqd 4016 . 2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ 𝐹{βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))}𝑃))
5 reseq1 4903 . . . . . . . . 9 (𝑓 = 𝐹 β†’ (𝑓 β†Ύ 𝑦) = (𝐹 β†Ύ 𝑦))
65feq1d 5354 . . . . . . . 8 (𝑓 = 𝐹 β†’ ((𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’ ↔ (𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’))
76rexbidv 2478 . . . . . . 7 (𝑓 = 𝐹 β†’ (βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’ ↔ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’))
87imbi2d 230 . . . . . 6 (𝑓 = 𝐹 β†’ ((π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’) ↔ (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
98ralbidv 2477 . . . . 5 (𝑓 = 𝐹 β†’ (βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’) ↔ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
10 eleq1 2240 . . . . . . 7 (π‘₯ = 𝑃 β†’ (π‘₯ ∈ 𝑒 ↔ 𝑃 ∈ 𝑒))
1110imbi1d 231 . . . . . 6 (π‘₯ = 𝑃 β†’ ((π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’) ↔ (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
1211ralbidv 2477 . . . . 5 (π‘₯ = 𝑃 β†’ (βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’) ↔ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
139, 12sylan9bb 462 . . . 4 ((𝑓 = 𝐹 ∧ π‘₯ = 𝑃) β†’ (βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’) ↔ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
14 df-3an 980 . . . . 5 ((𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’)) ↔ ((𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
1514opabbii 4072 . . . 4 {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))} = {βŸ¨π‘“, π‘₯⟩ ∣ ((𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))}
1613, 15brab2a 4681 . . 3 (𝐹{βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))}𝑃 ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
17 df-3an 980 . . 3 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
1816, 17bitr4i 187 . 2 (𝐹{βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))}𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
194, 18bitrdi 196 1 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456   class class class wbr 4005  {copab 4065  ran crn 4629   β†Ύ cres 4630  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877   ↑pm cpm 6651  β„‚cc 7811  β„€β‰₯cuz 9530  TopOnctopon 13549  β‡π‘‘clm 13726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pm 6653  df-top 13537  df-topon 13550  df-lm 13729
This theorem is referenced by:  lmbr2  13753  lmfpm  13782  lmcl  13784  lmff  13788
  Copyright terms: Public domain W3C validator