Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemex GIF version

Theorem tfr1onlemex 6126
 Description: Lemma for tfr1on 6129. (Contributed by Jim Kingdon, 16-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlemex (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧   𝐵,𝑓,𝑔,,𝑤,𝑧   𝑢,𝐵,𝑓,𝑤   𝐷,,𝑤,𝑧,𝑥   𝑢,𝐷   ,𝐺,𝑧,𝑦   𝑢,𝐺,𝑤   𝑔,𝑋,𝑧   𝜑,𝑤   𝑦,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑢)   𝐴(𝑦,𝑤,𝑢)   𝐵(𝑥,𝑦)   𝐷(𝑦)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑢,)

Proof of Theorem tfr1onlemex
StepHypRef Expression
1 tfr1on.f . . . 4 𝐹 = recs(𝐺)
2 tfr1on.g . . . 4 (𝜑 → Fun 𝐺)
3 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
4 tfr1on.ex . . . 4 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
5 tfr1onlemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfr1onlembacc.3 . . . 4 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfr1onlembacc.u . . . 4 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfr1onlembacc.4 . . . 4 (𝜑𝐷𝑋)
9 tfr1onlembacc.5 . . . 4 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembex 6124 . . 3 (𝜑𝐵 ∈ V)
11 uniexg 4275 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
1210, 11syl 14 . 2 (𝜑 𝐵 ∈ V)
131, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembfn 6123 . . 3 (𝜑 𝐵 Fn 𝐷)
141, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlemubacc 6125 . . 3 (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
1513, 14jca 301 . 2 (𝜑 → ( 𝐵 Fn 𝐷 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
16 fneq1 5115 . . . 4 (𝑓 = 𝐵 → (𝑓 Fn 𝐷 𝐵 Fn 𝐷))
17 fveq1 5317 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
18 reseq1 4720 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1918fveq2d 5322 . . . . . 6 (𝑓 = 𝐵 → (𝐺‘(𝑓𝑢)) = (𝐺‘( 𝐵𝑢)))
2017, 19eqeq12d 2103 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2120ralbidv 2381 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2216, 21anbi12d 458 . . 3 (𝑓 = 𝐵 → ((𝑓 Fn 𝐷 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))) ↔ ( 𝐵 Fn 𝐷 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))))
2322spcegv 2708 . 2 ( 𝐵 ∈ V → (( 𝐵 Fn 𝐷 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))) → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)))))
2412, 15, 23sylc 62 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 925   = wceq 1290  ∃wex 1427   ∈ wcel 1439  {cab 2075  ∀wral 2360  ∃wrex 2361  Vcvv 2620   ∪ cun 2998  {csn 3450  ⟨cop 3453  ∪ cuni 3659  Ord word 4198  suc csuc 4201   ↾ cres 4454  Fun wfun 5022   Fn wfn 5023  ‘cfv 5028  recscrecs 6083 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366 This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-recs 6084 This theorem is referenced by:  tfr1onlemaccex  6127
 Copyright terms: Public domain W3C validator