Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr1onlemex | GIF version |
Description: Lemma for tfr1on 6318. (Contributed by Jim Kingdon, 16-Mar-2022.) |
Ref | Expression |
---|---|
tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
tfr1onlemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfr1onlembacc.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
tfr1onlembacc.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
tfr1onlembacc.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑋) |
tfr1onlembacc.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
Ref | Expression |
---|---|
tfr1onlemex | ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr1on.f | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
2 | tfr1on.g | . . . 4 ⊢ (𝜑 → Fun 𝐺) | |
3 | tfr1on.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
4 | tfr1on.ex | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
5 | tfr1onlemsucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
6 | tfr1onlembacc.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | |
7 | tfr1onlembacc.u | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
8 | tfr1onlembacc.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑋) | |
9 | tfr1onlembacc.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembex 6313 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | uniexg 4417 | . . 3 ⊢ (𝐵 ∈ V → ∪ 𝐵 ∈ V) | |
12 | 10, 11 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembfn 6312 | . . 3 ⊢ (𝜑 → ∪ 𝐵 Fn 𝐷) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlemubacc 6314 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
15 | 13, 14 | jca 304 | . 2 ⊢ (𝜑 → (∪ 𝐵 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
16 | fneq1 5276 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 Fn 𝐷 ↔ ∪ 𝐵 Fn 𝐷)) | |
17 | fveq1 5485 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝑓‘𝑢) = (∪ 𝐵‘𝑢)) | |
18 | reseq1 4878 | . . . . . . 7 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑢)) | |
19 | 18 | fveq2d 5490 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝐺‘(𝑓 ↾ 𝑢)) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
20 | 17, 19 | eqeq12d 2180 | . . . . 5 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
21 | 20 | ralbidv 2466 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
22 | 16, 21 | anbi12d 465 | . . 3 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))) ↔ (∪ 𝐵 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))))) |
23 | 22 | spcegv 2814 | . 2 ⊢ (∪ 𝐵 ∈ V → ((∪ 𝐵 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))))) |
24 | 12, 15, 23 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∃wrex 2445 Vcvv 2726 ∪ cun 3114 {csn 3576 〈cop 3579 ∪ cuni 3789 Ord word 4340 suc csuc 4343 ↾ cres 4606 Fun wfun 5182 Fn wfn 5183 ‘cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-recs 6273 |
This theorem is referenced by: tfr1onlemaccex 6316 |
Copyright terms: Public domain | W3C validator |