| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemex | GIF version | ||
| Description: Lemma for tfr1on 6436. (Contributed by Jim Kingdon, 16-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f | ⊢ 𝐹 = recs(𝐺) |
| tfr1on.g | ⊢ (𝜑 → Fun 𝐺) |
| tfr1on.x | ⊢ (𝜑 → Ord 𝑋) |
| tfr1on.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| tfr1onlemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfr1onlembacc.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
| tfr1onlembacc.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| tfr1onlembacc.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑋) |
| tfr1onlembacc.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
| Ref | Expression |
|---|---|
| tfr1onlemex | ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1on.f | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfr1on.g | . . . 4 ⊢ (𝜑 → Fun 𝐺) | |
| 3 | tfr1on.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
| 4 | tfr1on.ex | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | |
| 5 | tfr1onlemsucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 6 | tfr1onlembacc.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | |
| 7 | tfr1onlembacc.u | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
| 8 | tfr1onlembacc.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑋) | |
| 9 | tfr1onlembacc.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembex 6431 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 11 | uniexg 4486 | . . 3 ⊢ (𝐵 ∈ V → ∪ 𝐵 ∈ V) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembfn 6430 | . . 3 ⊢ (𝜑 → ∪ 𝐵 Fn 𝐷) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlemubacc 6432 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
| 15 | 13, 14 | jca 306 | . 2 ⊢ (𝜑 → (∪ 𝐵 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
| 16 | fneq1 5362 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 Fn 𝐷 ↔ ∪ 𝐵 Fn 𝐷)) | |
| 17 | fveq1 5575 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝑓‘𝑢) = (∪ 𝐵‘𝑢)) | |
| 18 | reseq1 4953 | . . . . . . 7 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑢)) | |
| 19 | 18 | fveq2d 5580 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝐺‘(𝑓 ↾ 𝑢)) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
| 20 | 17, 19 | eqeq12d 2220 | . . . . 5 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
| 21 | 20 | ralbidv 2506 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
| 22 | 16, 21 | anbi12d 473 | . . 3 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))) ↔ (∪ 𝐵 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))))) |
| 23 | 22 | spcegv 2861 | . 2 ⊢ (∪ 𝐵 ∈ V → ((∪ 𝐵 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))))) |
| 24 | 12, 15, 23 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∃wex 1515 ∈ wcel 2176 {cab 2191 ∀wral 2484 ∃wrex 2485 Vcvv 2772 ∪ cun 3164 {csn 3633 〈cop 3636 ∪ cuni 3850 Ord word 4409 suc csuc 4412 ↾ cres 4677 Fun wfun 5265 Fn wfn 5266 ‘cfv 5271 recscrecs 6390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-recs 6391 |
| This theorem is referenced by: tfr1onlemaccex 6434 |
| Copyright terms: Public domain | W3C validator |