ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemex GIF version

Theorem tfrcllemex 6459
Description: Lemma for tfrcl 6463. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllemex (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,,𝑧   𝑢,𝐵,𝑓   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   𝑢,𝐷,𝑤   𝑦,𝑤   ,𝐺,𝑧   𝑢,𝐺,𝑤   𝑆,𝑔,,𝑧   𝑧,𝑋   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦)   𝑆(𝑤,𝑢)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑢,𝑔,)

Proof of Theorem tfrcllemex
StepHypRef Expression
1 tfrcl.f . . . 4 𝐹 = recs(𝐺)
2 tfrcl.g . . . 4 (𝜑 → Fun 𝐺)
3 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
4 tfrcl.ex . . . 4 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
5 tfrcllemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfrcllembacc.3 . . . 4 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfrcllembacc.u . . . 4 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfrcllembacc.4 . . . 4 (𝜑𝐷𝑋)
9 tfrcllembacc.5 . . . 4 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembex 6457 . . 3 (𝜑𝐵 ∈ V)
11 uniexg 4494 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
1210, 11syl 14 . 2 (𝜑 𝐵 ∈ V)
131, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6456 . . 3 (𝜑 𝐵:𝐷𝑆)
141, 2, 3, 4, 5, 6, 7, 8, 9tfrcllemubacc 6458 . . 3 (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
1513, 14jca 306 . 2 (𝜑 → ( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
16 feq1 5418 . . . 4 (𝑓 = 𝐵 → (𝑓:𝐷𝑆 𝐵:𝐷𝑆))
17 fveq1 5588 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
18 reseq1 4962 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1918fveq2d 5593 . . . . . 6 (𝑓 = 𝐵 → (𝐺‘(𝑓𝑢)) = (𝐺‘( 𝐵𝑢)))
2017, 19eqeq12d 2221 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2120ralbidv 2507 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2216, 21anbi12d 473 . . 3 (𝑓 = 𝐵 → ((𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))) ↔ ( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))))
2322spcegv 2865 . 2 ( 𝐵 ∈ V → (( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))) → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)))))
2412, 15, 23sylc 62 1 (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wral 2485  wrex 2486  Vcvv 2773  cun 3168  {csn 3638  cop 3641   cuni 3856  Ord word 4417  suc csuc 4420  cres 4685  Fun wfun 5274  wf 5276  cfv 5280  recscrecs 6403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-recs 6404
This theorem is referenced by:  tfrcllemaccex  6460
  Copyright terms: Public domain W3C validator