ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemex GIF version

Theorem tfrcllemex 6504
Description: Lemma for tfrcl 6508. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllemex (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,,𝑧   𝑢,𝐵,𝑓   𝑤,𝐵,𝑔,𝑧   𝐷,,𝑧   𝑢,𝐷,𝑤   𝑦,𝑤   ,𝐺,𝑧   𝑢,𝐺,𝑤   𝑆,𝑔,,𝑧   𝑧,𝑋   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦)   𝑆(𝑤,𝑢)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑢,𝑔,)

Proof of Theorem tfrcllemex
StepHypRef Expression
1 tfrcl.f . . . 4 𝐹 = recs(𝐺)
2 tfrcl.g . . . 4 (𝜑 → Fun 𝐺)
3 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
4 tfrcl.ex . . . 4 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
5 tfrcllemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfrcllembacc.3 . . . 4 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfrcllembacc.u . . . 4 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfrcllembacc.4 . . . 4 (𝜑𝐷𝑋)
9 tfrcllembacc.5 . . . 4 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembex 6502 . . 3 (𝜑𝐵 ∈ V)
11 uniexg 4529 . . 3 (𝐵 ∈ V → 𝐵 ∈ V)
1210, 11syl 14 . 2 (𝜑 𝐵 ∈ V)
131, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6501 . . 3 (𝜑 𝐵:𝐷𝑆)
141, 2, 3, 4, 5, 6, 7, 8, 9tfrcllemubacc 6503 . . 3 (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
1513, 14jca 306 . 2 (𝜑 → ( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
16 feq1 5455 . . . 4 (𝑓 = 𝐵 → (𝑓:𝐷𝑆 𝐵:𝐷𝑆))
17 fveq1 5625 . . . . . 6 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
18 reseq1 4998 . . . . . . 7 (𝑓 = 𝐵 → (𝑓𝑢) = ( 𝐵𝑢))
1918fveq2d 5630 . . . . . 6 (𝑓 = 𝐵 → (𝐺‘(𝑓𝑢)) = (𝐺‘( 𝐵𝑢)))
2017, 19eqeq12d 2244 . . . . 5 (𝑓 = 𝐵 → ((𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2120ralbidv 2530 . . . 4 (𝑓 = 𝐵 → (∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)) ↔ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))))
2216, 21anbi12d 473 . . 3 (𝑓 = 𝐵 → ((𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))) ↔ ( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))))
2322spcegv 2891 . 2 ( 𝐵 ∈ V → (( 𝐵:𝐷𝑆 ∧ ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢))) → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢)))))
2412, 15, 23sylc 62 1 (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  {csn 3666  cop 3669   cuni 3887  Ord word 4452  suc csuc 4455  cres 4720  Fun wfun 5311  wf 5313  cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449
This theorem is referenced by:  tfrcllemaccex  6505
  Copyright terms: Public domain W3C validator