| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrcllemex | GIF version | ||
| Description: Lemma for tfrcl 6463. (Contributed by Jim Kingdon, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfrcl.f | ⊢ 𝐹 = recs(𝐺) |
| tfrcl.g | ⊢ (𝜑 → Fun 𝐺) |
| tfrcl.x | ⊢ (𝜑 → Ord 𝑋) |
| tfrcl.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| tfrcllemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfrcllembacc.3 | ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
| tfrcllembacc.u | ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| tfrcllembacc.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑋) |
| tfrcllembacc.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
| Ref | Expression |
|---|---|
| tfrcllemex | ⊢ (𝜑 → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrcl.f | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfrcl.g | . . . 4 ⊢ (𝜑 → Fun 𝐺) | |
| 3 | tfrcl.x | . . . 4 ⊢ (𝜑 → Ord 𝑋) | |
| 4 | tfrcl.ex | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | |
| 5 | tfrcllemsucfn.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 6 | tfrcllembacc.3 | . . . 4 ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} | |
| 7 | tfrcllembacc.u | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | |
| 8 | tfrcllembacc.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑋) | |
| 9 | tfrcllembacc.5 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembex 6457 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 11 | uniexg 4494 | . . 3 ⊢ (𝐵 ∈ V → ∪ 𝐵 ∈ V) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembfn 6456 | . . 3 ⊢ (𝜑 → ∪ 𝐵:𝐷⟶𝑆) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllemubacc 6458 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
| 15 | 13, 14 | jca 306 | . 2 ⊢ (𝜑 → (∪ 𝐵:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
| 16 | feq1 5418 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (𝑓:𝐷⟶𝑆 ↔ ∪ 𝐵:𝐷⟶𝑆)) | |
| 17 | fveq1 5588 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝑓‘𝑢) = (∪ 𝐵‘𝑢)) | |
| 18 | reseq1 4962 | . . . . . . 7 ⊢ (𝑓 = ∪ 𝐵 → (𝑓 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑢)) | |
| 19 | 18 | fveq2d 5593 | . . . . . 6 ⊢ (𝑓 = ∪ 𝐵 → (𝐺‘(𝑓 ↾ 𝑢)) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |
| 20 | 17, 19 | eqeq12d 2221 | . . . . 5 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
| 21 | 20 | ralbidv 2507 | . . . 4 ⊢ (𝑓 = ∪ 𝐵 → (∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)))) |
| 22 | 16, 21 | anbi12d 473 | . . 3 ⊢ (𝑓 = ∪ 𝐵 → ((𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))) ↔ (∪ 𝐵:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))))) |
| 23 | 22 | spcegv 2865 | . 2 ⊢ (∪ 𝐵 ∈ V → ((∪ 𝐵:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢))))) |
| 24 | 12, 15, 23 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∃wex 1516 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∃wrex 2486 Vcvv 2773 ∪ cun 3168 {csn 3638 〈cop 3641 ∪ cuni 3856 Ord word 4417 suc csuc 4420 ↾ cres 4685 Fun wfun 5274 ⟶wf 5276 ‘cfv 5280 recscrecs 6403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-recs 6404 |
| This theorem is referenced by: tfrcllemaccex 6460 |
| Copyright terms: Public domain | W3C validator |