ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexg GIF version

Theorem funimaexg 5272
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
StepHypRef Expression
1 simpl 108 . . 3 ((Fun 𝐴𝐵𝐶) → Fun 𝐴)
2 funrel 5205 . . 3 (Fun 𝐴 → Rel 𝐴)
3 resres 4896 . . . . . . 7 ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (dom 𝐴𝐵))
4 incom 3314 . . . . . . . 8 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
54reseq2i 4881 . . . . . . 7 (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ (dom 𝐴𝐵))
63, 5eqtr4i 2189 . . . . . 6 ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (𝐵 ∩ dom 𝐴))
7 resdm 4923 . . . . . . 7 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
87reseq1d 4883 . . . . . 6 (Rel 𝐴 → ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴𝐵))
96, 8eqtr3id 2213 . . . . 5 (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
109rneqd 4833 . . . 4 (Rel 𝐴 → ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ran (𝐴𝐵))
11 df-ima 4617 . . . 4 (𝐴 “ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ (𝐵 ∩ dom 𝐴))
12 df-ima 4617 . . . 4 (𝐴𝐵) = ran (𝐴𝐵)
1310, 11, 123eqtr4g 2224 . . 3 (Rel 𝐴 → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
141, 2, 133syl 17 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
15 inex1g 4118 . . 3 (𝐵𝐶 → (𝐵 ∩ dom 𝐴) ∈ V)
16 inss2 3343 . . . 4 (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴
17 funimaexglem 5271 . . . 4 ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V ∧ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
1816, 17mp3an3 1316 . . 3 ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
1915, 18sylan2 284 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
2014, 19eqeltrrd 2244 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cin 3115  wss 3116  dom cdm 4604  ran crn 4605  cres 4606  cima 4607  Rel wrel 4609  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  funimaex  5273  resfunexg  5706  resfunexgALT  6076  fnexALT  6079  suplocexprlem2b  7655  suplocexprlemlub  7665
  Copyright terms: Public domain W3C validator