ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexg GIF version

Theorem funimaexg 5338
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
StepHypRef Expression
1 simpl 109 . . 3 ((Fun 𝐴𝐵𝐶) → Fun 𝐴)
2 funrel 5271 . . 3 (Fun 𝐴 → Rel 𝐴)
3 resres 4954 . . . . . . 7 ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (dom 𝐴𝐵))
4 incom 3351 . . . . . . . 8 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
54reseq2i 4939 . . . . . . 7 (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ (dom 𝐴𝐵))
63, 5eqtr4i 2217 . . . . . 6 ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (𝐵 ∩ dom 𝐴))
7 resdm 4981 . . . . . . 7 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
87reseq1d 4941 . . . . . 6 (Rel 𝐴 → ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴𝐵))
96, 8eqtr3id 2240 . . . . 5 (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
109rneqd 4891 . . . 4 (Rel 𝐴 → ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ran (𝐴𝐵))
11 df-ima 4672 . . . 4 (𝐴 “ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ (𝐵 ∩ dom 𝐴))
12 df-ima 4672 . . . 4 (𝐴𝐵) = ran (𝐴𝐵)
1310, 11, 123eqtr4g 2251 . . 3 (Rel 𝐴 → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
141, 2, 133syl 17 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
15 inex1g 4165 . . 3 (𝐵𝐶 → (𝐵 ∩ dom 𝐴) ∈ V)
16 inss2 3380 . . . 4 (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴
17 funimaexglem 5337 . . . 4 ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V ∧ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
1816, 17mp3an3 1337 . . 3 ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
1915, 18sylan2 286 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
2014, 19eqeltrrd 2271 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cin 3152  wss 3153  dom cdm 4659  ran crn 4660  cres 4661  cima 4662  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256
This theorem is referenced by:  funimaex  5339  resfunexg  5779  resfunexgALT  6160  fnexALT  6163  suplocexprlem2b  7774  suplocexprlemlub  7784
  Copyright terms: Public domain W3C validator