| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimaexg | GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) |
| Ref | Expression |
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun 𝐴) | |
| 2 | funrel 5293 | . . 3 ⊢ (Fun 𝐴 → Rel 𝐴) | |
| 3 | resres 4976 | . . . . . . 7 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) | |
| 4 | incom 3366 | . . . . . . . 8 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 5 | 4 | reseq2i 4961 | . . . . . . 7 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) |
| 6 | 3, 5 | eqtr4i 2230 | . . . . . 6 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (𝐵 ∩ dom 𝐴)) |
| 7 | resdm 5003 | . . . . . . 7 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 8 | 7 | reseq1d 4963 | . . . . . 6 ⊢ (Rel 𝐴 → ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| 9 | 6, 8 | eqtr3id 2253 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| 10 | 9 | rneqd 4912 | . . . 4 ⊢ (Rel 𝐴 → ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ 𝐵)) |
| 11 | df-ima 4692 | . . . 4 ⊢ (𝐴 “ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) | |
| 12 | df-ima 4692 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 13 | 10, 11, 12 | 3eqtr4g 2264 | . . 3 ⊢ (Rel 𝐴 → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) |
| 14 | 1, 2, 13 | 3syl 17 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) |
| 15 | inex1g 4184 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∩ dom 𝐴) ∈ V) | |
| 16 | inss2 3395 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴 | |
| 17 | funimaexglem 5362 | . . . 4 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V ∧ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) | |
| 18 | 16, 17 | mp3an3 1339 | . . 3 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) |
| 19 | 15, 18 | sylan2 286 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) |
| 20 | 14, 19 | eqeltrrd 2284 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3166 ⊆ wss 3167 dom cdm 4679 ran crn 4680 ↾ cres 4681 “ cima 4682 Rel wrel 4684 Fun wfun 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 |
| This theorem is referenced by: funimaex 5364 resfunexg 5812 resfunexgALT 6200 fnexALT 6203 suplocexprlem2b 7834 suplocexprlemlub 7844 |
| Copyright terms: Public domain | W3C validator |