ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexg GIF version

Theorem funimaexg 5339
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
StepHypRef Expression
1 simpl 109 . . 3 ((Fun 𝐴𝐵𝐶) → Fun 𝐴)
2 funrel 5272 . . 3 (Fun 𝐴 → Rel 𝐴)
3 resres 4955 . . . . . . 7 ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (dom 𝐴𝐵))
4 incom 3352 . . . . . . . 8 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
54reseq2i 4940 . . . . . . 7 (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ (dom 𝐴𝐵))
63, 5eqtr4i 2217 . . . . . 6 ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (𝐵 ∩ dom 𝐴))
7 resdm 4982 . . . . . . 7 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
87reseq1d 4942 . . . . . 6 (Rel 𝐴 → ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴𝐵))
96, 8eqtr3id 2240 . . . . 5 (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
109rneqd 4892 . . . 4 (Rel 𝐴 → ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ran (𝐴𝐵))
11 df-ima 4673 . . . 4 (𝐴 “ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ (𝐵 ∩ dom 𝐴))
12 df-ima 4673 . . . 4 (𝐴𝐵) = ran (𝐴𝐵)
1310, 11, 123eqtr4g 2251 . . 3 (Rel 𝐴 → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
141, 2, 133syl 17 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
15 inex1g 4166 . . 3 (𝐵𝐶 → (𝐵 ∩ dom 𝐴) ∈ V)
16 inss2 3381 . . . 4 (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴
17 funimaexglem 5338 . . . 4 ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V ∧ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
1816, 17mp3an3 1337 . . 3 ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
1915, 18sylan2 286 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V)
2014, 19eqeltrrd 2271 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  wss 3154  dom cdm 4660  ran crn 4661  cres 4662  cima 4663  Rel wrel 4665  Fun wfun 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257
This theorem is referenced by:  funimaex  5340  resfunexg  5780  resfunexgALT  6162  fnexALT  6165  suplocexprlem2b  7776  suplocexprlemlub  7786
  Copyright terms: Public domain W3C validator