| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimaexg | GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) |
| Ref | Expression |
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun 𝐴) | |
| 2 | funrel 5335 | . . 3 ⊢ (Fun 𝐴 → Rel 𝐴) | |
| 3 | resres 5017 | . . . . . . 7 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) | |
| 4 | incom 3396 | . . . . . . . 8 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 5 | 4 | reseq2i 5002 | . . . . . . 7 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) |
| 6 | 3, 5 | eqtr4i 2253 | . . . . . 6 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (𝐵 ∩ dom 𝐴)) |
| 7 | resdm 5044 | . . . . . . 7 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 8 | 7 | reseq1d 5004 | . . . . . 6 ⊢ (Rel 𝐴 → ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| 9 | 6, 8 | eqtr3id 2276 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| 10 | 9 | rneqd 4953 | . . . 4 ⊢ (Rel 𝐴 → ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ 𝐵)) |
| 11 | df-ima 4732 | . . . 4 ⊢ (𝐴 “ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) | |
| 12 | df-ima 4732 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 13 | 10, 11, 12 | 3eqtr4g 2287 | . . 3 ⊢ (Rel 𝐴 → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) |
| 14 | 1, 2, 13 | 3syl 17 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) |
| 15 | inex1g 4220 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∩ dom 𝐴) ∈ V) | |
| 16 | inss2 3425 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴 | |
| 17 | funimaexglem 5404 | . . . 4 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V ∧ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) | |
| 18 | 16, 17 | mp3an3 1360 | . . 3 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) |
| 19 | 15, 18 | sylan2 286 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) |
| 20 | 14, 19 | eqeltrrd 2307 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 dom cdm 4719 ran crn 4720 ↾ cres 4721 “ cima 4722 Rel wrel 4724 Fun wfun 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 |
| This theorem is referenced by: funimaex 5406 resfunexg 5864 resfunexgALT 6259 fnexALT 6262 suplocexprlem2b 7909 suplocexprlemlub 7919 |
| Copyright terms: Public domain | W3C validator |