| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimaexg | GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) |
| Ref | Expression |
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun 𝐴) | |
| 2 | funrel 5311 | . . 3 ⊢ (Fun 𝐴 → Rel 𝐴) | |
| 3 | resres 4993 | . . . . . . 7 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) | |
| 4 | incom 3376 | . . . . . . . 8 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 5 | 4 | reseq2i 4978 | . . . . . . 7 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) |
| 6 | 3, 5 | eqtr4i 2233 | . . . . . 6 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (𝐵 ∩ dom 𝐴)) |
| 7 | resdm 5020 | . . . . . . 7 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 8 | 7 | reseq1d 4980 | . . . . . 6 ⊢ (Rel 𝐴 → ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
| 9 | 6, 8 | eqtr3id 2256 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| 10 | 9 | rneqd 4929 | . . . 4 ⊢ (Rel 𝐴 → ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ 𝐵)) |
| 11 | df-ima 4709 | . . . 4 ⊢ (𝐴 “ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) | |
| 12 | df-ima 4709 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 13 | 10, 11, 12 | 3eqtr4g 2267 | . . 3 ⊢ (Rel 𝐴 → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) |
| 14 | 1, 2, 13 | 3syl 17 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) |
| 15 | inex1g 4199 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∩ dom 𝐴) ∈ V) | |
| 16 | inss2 3405 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴 | |
| 17 | funimaexglem 5380 | . . . 4 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V ∧ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) | |
| 18 | 16, 17 | mp3an3 1341 | . . 3 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) |
| 19 | 15, 18 | sylan2 286 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) |
| 20 | 14, 19 | eqeltrrd 2287 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∩ cin 3176 ⊆ wss 3177 dom cdm 4696 ran crn 4697 ↾ cres 4698 “ cima 4699 Rel wrel 4701 Fun wfun 5288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-fun 5296 |
| This theorem is referenced by: funimaex 5382 resfunexg 5833 resfunexgALT 6223 fnexALT 6226 suplocexprlem2b 7869 suplocexprlemlub 7879 |
| Copyright terms: Public domain | W3C validator |