| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funimaexg | GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun 𝐴) | |
| 2 | funrel 5275 | . . 3 ⊢ (Fun 𝐴 → Rel 𝐴) | |
| 3 | resres 4958 | . . . . . . 7 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) | |
| 4 | incom 3355 | . . . . . . . 8 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
| 5 | 4 | reseq2i 4943 | . . . . . . 7 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ (dom 𝐴 ∩ 𝐵)) | 
| 6 | 3, 5 | eqtr4i 2220 | . . . . . 6 ⊢ ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ (𝐵 ∩ dom 𝐴)) | 
| 7 | resdm 4985 | . . . . . . 7 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 8 | 7 | reseq1d 4945 | . . . . . 6 ⊢ (Rel 𝐴 → ((𝐴 ↾ dom 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | 
| 9 | 6, 8 | eqtr3id 2243 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) | 
| 10 | 9 | rneqd 4895 | . . . 4 ⊢ (Rel 𝐴 → ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ 𝐵)) | 
| 11 | df-ima 4676 | . . . 4 ⊢ (𝐴 “ (𝐵 ∩ dom 𝐴)) = ran (𝐴 ↾ (𝐵 ∩ dom 𝐴)) | |
| 12 | df-ima 4676 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 13 | 10, 11, 12 | 3eqtr4g 2254 | . . 3 ⊢ (Rel 𝐴 → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) | 
| 14 | 1, 2, 13 | 3syl 17 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) = (𝐴 “ 𝐵)) | 
| 15 | inex1g 4169 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∩ dom 𝐴) ∈ V) | |
| 16 | inss2 3384 | . . . 4 ⊢ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴 | |
| 17 | funimaexglem 5341 | . . . 4 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V ∧ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) | |
| 18 | 16, 17 | mp3an3 1337 | . . 3 ⊢ ((Fun 𝐴 ∧ (𝐵 ∩ dom 𝐴) ∈ V) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) | 
| 19 | 15, 18 | sylan2 286 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ (𝐵 ∩ dom 𝐴)) ∈ V) | 
| 20 | 14, 19 | eqeltrrd 2274 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 dom cdm 4663 ran crn 4664 ↾ cres 4665 “ cima 4666 Rel wrel 4668 Fun wfun 5252 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 | 
| This theorem is referenced by: funimaex 5343 resfunexg 5783 resfunexgALT 6165 fnexALT 6168 suplocexprlem2b 7781 suplocexprlemlub 7791 | 
| Copyright terms: Public domain | W3C validator |