ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnz GIF version

Theorem exbtwnz 10340
Description: If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnz.ex (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
exbtwnz.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
exbtwnz (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem exbtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exbtwnz.ex . 2 (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
2 simplrl 535 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ)
32zred 9448 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ)
4 exbtwnz.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ)
6 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ)
76zred 9448 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ)
8 1red 8041 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 1 ∈ ℝ)
97, 8readdcld 8056 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ)
10 simprll 537 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝐴)
11 simprrr 540 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1))
123, 5, 9, 10, 11lelttrd 8151 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1))
13 zleltp1 9381 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦𝑥 < (𝑦 + 1)))
142, 6, 13syl2anc 411 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥𝑦𝑥 < (𝑦 + 1)))
1512, 14mpbird 167 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝑦)
163, 8readdcld 8056 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ)
17 simprrl 539 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝐴)
18 simprlr 538 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1))
197, 5, 16, 17, 18lelttrd 8151 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1))
20 zleltp1 9381 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑦 < (𝑥 + 1)))
216, 2, 20syl2anc 411 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦𝑥𝑦 < (𝑥 + 1)))
2219, 21mpbird 167 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝑥)
233, 7letri3d 8142 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2415, 22, 23mpbir2and 946 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦)
2524ex 115 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
2625ralrimivva 2579 . . 3 (𝜑 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
27 breq1 4036 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
28 oveq1 5929 . . . . . 6 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
2928breq2d 4045 . . . . 5 (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1)))
3027, 29anbi12d 473 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (𝑦𝐴𝐴 < (𝑦 + 1))))
3130rmo4 2957 . . 3 (∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
3226, 31sylibr 134 . 2 (𝜑 → ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
33 reu5 2714 . 2 (∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
341, 32, 33sylanbrc 417 1 (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  wral 2475  wrex 2476  ∃!wreu 2477  ∃*wrmo 2478   class class class wbr 4033  (class class class)co 5922  cr 7878  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  qbtwnz  10341  apbtwnz  10364
  Copyright terms: Public domain W3C validator