| Step | Hyp | Ref
| Expression |
| 1 | | exbtwnz.ex |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| 2 | | simplrl 535 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ) |
| 3 | 2 | zred 9465 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ) |
| 4 | | exbtwnz.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 5 | 4 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ) |
| 6 | | simplrr 536 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ) |
| 7 | 6 | zred 9465 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ) |
| 8 | | 1red 8058 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 1 ∈
ℝ) |
| 9 | 7, 8 | readdcld 8073 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ) |
| 10 | | simprll 537 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ≤ 𝐴) |
| 11 | | simprrr 540 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1)) |
| 12 | 3, 5, 9, 10, 11 | lelttrd 8168 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1)) |
| 13 | | zleltp1 9398 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 ≤ 𝑦 ↔ 𝑥 < (𝑦 + 1))) |
| 14 | 2, 6, 13 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 ≤ 𝑦 ↔ 𝑥 < (𝑦 + 1))) |
| 15 | 12, 14 | mpbird 167 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ≤ 𝑦) |
| 16 | 3, 8 | readdcld 8073 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ) |
| 17 | | simprrl 539 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ≤ 𝐴) |
| 18 | | simprlr 538 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1)) |
| 19 | 7, 5, 16, 17, 18 | lelttrd 8168 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1)) |
| 20 | | zleltp1 9398 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝑥 ↔ 𝑦 < (𝑥 + 1))) |
| 21 | 6, 2, 20 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑦 ≤ 𝑥 ↔ 𝑦 < (𝑥 + 1))) |
| 22 | 19, 21 | mpbird 167 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ≤ 𝑥) |
| 23 | 3, 7 | letri3d 8159 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) |
| 24 | 15, 22, 23 | mpbir2and 946 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦) |
| 25 | 24 | ex 115 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) |
| 26 | 25 | ralrimivva 2579 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) |
| 27 | | breq1 4037 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝐴 ↔ 𝑦 ≤ 𝐴)) |
| 28 | | oveq1 5932 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) |
| 29 | 28 | breq2d 4046 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1))) |
| 30 | 27, 29 | anbi12d 473 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) |
| 31 | 30 | rmo4 2957 |
. . 3
⊢
(∃*𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) |
| 32 | 26, 31 | sylibr 134 |
. 2
⊢ (𝜑 → ∃*𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| 33 | | reu5 2714 |
. 2
⊢
(∃!𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 34 | 1, 32, 33 | sylanbrc 417 |
1
⊢ (𝜑 → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |