| Step | Hyp | Ref
 | Expression | 
| 1 |   | exbtwnz.ex | 
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | 
| 2 |   | simplrl 535 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ) | 
| 3 | 2 | zred 9448 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ) | 
| 4 |   | exbtwnz.a | 
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 5 | 4 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ) | 
| 6 |   | simplrr 536 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ) | 
| 7 | 6 | zred 9448 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ) | 
| 8 |   | 1red 8041 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 1 ∈
ℝ) | 
| 9 | 7, 8 | readdcld 8056 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ) | 
| 10 |   | simprll 537 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ≤ 𝐴) | 
| 11 |   | simprrr 540 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1)) | 
| 12 | 3, 5, 9, 10, 11 | lelttrd 8151 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1)) | 
| 13 |   | zleltp1 9381 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 ≤ 𝑦 ↔ 𝑥 < (𝑦 + 1))) | 
| 14 | 2, 6, 13 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 ≤ 𝑦 ↔ 𝑥 < (𝑦 + 1))) | 
| 15 | 12, 14 | mpbird 167 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ≤ 𝑦) | 
| 16 | 3, 8 | readdcld 8056 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ) | 
| 17 |   | simprrl 539 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ≤ 𝐴) | 
| 18 |   | simprlr 538 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1)) | 
| 19 | 7, 5, 16, 17, 18 | lelttrd 8151 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1)) | 
| 20 |   | zleltp1 9381 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝑥 ↔ 𝑦 < (𝑥 + 1))) | 
| 21 | 6, 2, 20 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑦 ≤ 𝑥 ↔ 𝑦 < (𝑥 + 1))) | 
| 22 | 19, 21 | mpbird 167 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ≤ 𝑥) | 
| 23 | 3, 7 | letri3d 8142 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) | 
| 24 | 15, 22, 23 | mpbir2and 946 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦) | 
| 25 | 24 | ex 115 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) | 
| 26 | 25 | ralrimivva 2579 | 
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) | 
| 27 |   | breq1 4036 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝐴 ↔ 𝑦 ≤ 𝐴)) | 
| 28 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | 
| 29 | 28 | breq2d 4045 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1))) | 
| 30 | 27, 29 | anbi12d 473 | 
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) | 
| 31 | 30 | rmo4 2957 | 
. . 3
⊢
(∃*𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) | 
| 32 | 26, 31 | sylibr 134 | 
. 2
⊢ (𝜑 → ∃*𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | 
| 33 |   | reu5 2714 | 
. 2
⊢
(∃!𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | 
| 34 | 1, 32, 33 | sylanbrc 417 | 
1
⊢ (𝜑 → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |