Step | Hyp | Ref
| Expression |
1 | | exbtwnz.ex |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
2 | | simplrl 525 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ) |
3 | 2 | zred 9313 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ) |
4 | | exbtwnz.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ) |
6 | | simplrr 526 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ) |
7 | 6 | zred 9313 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ) |
8 | | 1red 7914 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 1 ∈
ℝ) |
9 | 7, 8 | readdcld 7928 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ) |
10 | | simprll 527 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ≤ 𝐴) |
11 | | simprrr 530 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1)) |
12 | 3, 5, 9, 10, 11 | lelttrd 8023 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1)) |
13 | | zleltp1 9246 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 ≤ 𝑦 ↔ 𝑥 < (𝑦 + 1))) |
14 | 2, 6, 13 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 ≤ 𝑦 ↔ 𝑥 < (𝑦 + 1))) |
15 | 12, 14 | mpbird 166 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 ≤ 𝑦) |
16 | 3, 8 | readdcld 7928 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ) |
17 | | simprrl 529 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ≤ 𝐴) |
18 | | simprlr 528 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1)) |
19 | 7, 5, 16, 17, 18 | lelttrd 8023 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1)) |
20 | | zleltp1 9246 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝑥 ↔ 𝑦 < (𝑥 + 1))) |
21 | 6, 2, 20 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑦 ≤ 𝑥 ↔ 𝑦 < (𝑥 + 1))) |
22 | 19, 21 | mpbird 166 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑦 ≤ 𝑥) |
23 | 3, 7 | letri3d 8014 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥))) |
24 | 15, 22, 23 | mpbir2and 934 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦) |
25 | 24 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) |
26 | 25 | ralrimivva 2548 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) |
27 | | breq1 3985 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝐴 ↔ 𝑦 ≤ 𝐴)) |
28 | | oveq1 5849 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) |
29 | 28 | breq2d 3994 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1))) |
30 | 27, 29 | anbi12d 465 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1)))) |
31 | 30 | rmo4 2919 |
. . 3
⊢
(∃*𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦)) |
32 | 26, 31 | sylibr 133 |
. 2
⊢ (𝜑 → ∃*𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
33 | | reu5 2678 |
. 2
⊢
(∃!𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
34 | 1, 32, 33 | sylanbrc 414 |
1
⊢ (𝜑 → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |