ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnz GIF version

Theorem exbtwnz 10415
Description: If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnz.ex (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
exbtwnz.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
exbtwnz (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem exbtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exbtwnz.ex . 2 (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
2 simplrl 535 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ)
32zred 9515 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ)
4 exbtwnz.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ)
6 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ)
76zred 9515 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ)
8 1red 8107 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 1 ∈ ℝ)
97, 8readdcld 8122 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ)
10 simprll 537 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝐴)
11 simprrr 540 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1))
123, 5, 9, 10, 11lelttrd 8217 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1))
13 zleltp1 9448 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦𝑥 < (𝑦 + 1)))
142, 6, 13syl2anc 411 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥𝑦𝑥 < (𝑦 + 1)))
1512, 14mpbird 167 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝑦)
163, 8readdcld 8122 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ)
17 simprrl 539 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝐴)
18 simprlr 538 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1))
197, 5, 16, 17, 18lelttrd 8217 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1))
20 zleltp1 9448 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑦 < (𝑥 + 1)))
216, 2, 20syl2anc 411 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦𝑥𝑦 < (𝑥 + 1)))
2219, 21mpbird 167 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝑥)
233, 7letri3d 8208 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2415, 22, 23mpbir2and 947 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦)
2524ex 115 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
2625ralrimivva 2589 . . 3 (𝜑 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
27 breq1 4054 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
28 oveq1 5964 . . . . . 6 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
2928breq2d 4063 . . . . 5 (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1)))
3027, 29anbi12d 473 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (𝑦𝐴𝐴 < (𝑦 + 1))))
3130rmo4 2970 . . 3 (∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
3226, 31sylibr 134 . 2 (𝜑 → ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
33 reu5 2724 . 2 (∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
341, 32, 33sylanbrc 417 1 (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177  wral 2485  wrex 2486  ∃!wreu 2487  ∃*wrmo 2488   class class class wbr 4051  (class class class)co 5957  cr 7944  1c1 7946   + caddc 7948   < clt 8127  cle 8128  cz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393
This theorem is referenced by:  qbtwnz  10416  apbtwnz  10439
  Copyright terms: Public domain W3C validator