ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnz GIF version

Theorem exbtwnz 9627
Description: If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnz.ex (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
exbtwnz.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
exbtwnz (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem exbtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exbtwnz.ex . 2 (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
2 simplrl 502 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ)
32zred 8838 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ)
4 exbtwnz.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54ad2antrr 472 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ)
6 simplrr 503 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ)
76zred 8838 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ)
8 1red 7482 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 1 ∈ ℝ)
97, 8readdcld 7496 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ)
10 simprll 504 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝐴)
11 simprrr 507 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1))
123, 5, 9, 10, 11lelttrd 7587 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1))
13 zleltp1 8775 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦𝑥 < (𝑦 + 1)))
142, 6, 13syl2anc 403 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥𝑦𝑥 < (𝑦 + 1)))
1512, 14mpbird 165 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝑦)
163, 8readdcld 7496 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ)
17 simprrl 506 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝐴)
18 simprlr 505 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1))
197, 5, 16, 17, 18lelttrd 7587 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1))
20 zleltp1 8775 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑦 < (𝑥 + 1)))
216, 2, 20syl2anc 403 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦𝑥𝑦 < (𝑥 + 1)))
2219, 21mpbird 165 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝑥)
233, 7letri3d 7579 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2415, 22, 23mpbir2and 890 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦)
2524ex 113 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
2625ralrimivva 2455 . . 3 (𝜑 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
27 breq1 3840 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
28 oveq1 5641 . . . . . 6 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
2928breq2d 3849 . . . . 5 (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1)))
3027, 29anbi12d 457 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (𝑦𝐴𝐴 < (𝑦 + 1))))
3130rmo4 2806 . . 3 (∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
3226, 31sylibr 132 . 2 (𝜑 → ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
33 reu5 2579 . 2 (∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
341, 32, 33sylanbrc 408 1 (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1438  wral 2359  wrex 2360  ∃!wreu 2361  ∃*wrmo 2362   class class class wbr 3837  (class class class)co 5634  cr 7328  1c1 7330   + caddc 7332   < clt 7501  cle 7502  cz 8720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721
This theorem is referenced by:  qbtwnz  9628  apbtwnz  9646
  Copyright terms: Public domain W3C validator