Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnz GIF version

Theorem exbtwnz 10058
 Description: If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnz.ex (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
exbtwnz.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
exbtwnz (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem exbtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exbtwnz.ex . 2 (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
2 simplrl 525 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℤ)
32zred 9196 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 ∈ ℝ)
4 exbtwnz.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
54ad2antrr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 ∈ ℝ)
6 simplrr 526 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℤ)
76zred 9196 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 ∈ ℝ)
8 1red 7804 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 1 ∈ ℝ)
97, 8readdcld 7818 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦 + 1) ∈ ℝ)
10 simprll 527 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝐴)
11 simprrr 530 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑦 + 1))
123, 5, 9, 10, 11lelttrd 7910 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 < (𝑦 + 1))
13 zleltp1 9132 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦𝑥 < (𝑦 + 1)))
142, 6, 13syl2anc 409 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥𝑦𝑥 < (𝑦 + 1)))
1512, 14mpbird 166 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥𝑦)
163, 8readdcld 7818 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 + 1) ∈ ℝ)
17 simprrl 529 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝐴)
18 simprlr 528 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝐴 < (𝑥 + 1))
197, 5, 16, 17, 18lelttrd 7910 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦 < (𝑥 + 1))
20 zleltp1 9132 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥𝑦 < (𝑥 + 1)))
216, 2, 20syl2anc 409 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑦𝑥𝑦 < (𝑥 + 1)))
2219, 21mpbird 166 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑦𝑥)
233, 7letri3d 7902 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2415, 22, 23mpbir2and 929 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1)))) → 𝑥 = 𝑦)
2524ex 114 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
2625ralrimivva 2517 . . 3 (𝜑 → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
27 breq1 3939 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
28 oveq1 5788 . . . . . 6 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
2928breq2d 3948 . . . . 5 (𝑥 = 𝑦 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝑦 + 1)))
3027, 29anbi12d 465 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (𝑦𝐴𝐴 < (𝑦 + 1))))
3130rmo4 2880 . . 3 (∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (((𝑥𝐴𝐴 < (𝑥 + 1)) ∧ (𝑦𝐴𝐴 < (𝑦 + 1))) → 𝑥 = 𝑦))
3226, 31sylibr 133 . 2 (𝜑 → ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
33 reu5 2646 . 2 (∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) ∧ ∃*𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
341, 32, 33sylanbrc 414 1 (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418  ∃!wreu 2419  ∃*wrmo 2420   class class class wbr 3936  (class class class)co 5781  ℝcr 7642  1c1 7644   + caddc 7646   < clt 7823   ≤ cle 7824  ℤcz 9077 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-inn 8744  df-n0 9001  df-z 9078 This theorem is referenced by:  qbtwnz  10059  apbtwnz  10077
 Copyright terms: Public domain W3C validator