ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseu GIF version

Theorem pw2dvdseu 12306
Description: A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
pw2dvdseu (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁

Proof of Theorem pw2dvdseu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pw2dvds 12304 . 2 (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
2 simpll 527 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑁 ∈ ℕ)
3 simplrl 535 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℕ0)
4 simplrr 536 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℕ0)
5 simprll 537 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑚) ∥ 𝑁)
6 simprrr 540 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑥 + 1)) ∥ 𝑁)
72, 3, 4, 5, 6pw2dvdseulemle 12305 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚𝑥)
8 simprrl 539 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑥) ∥ 𝑁)
9 simprlr 538 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑚 + 1)) ∥ 𝑁)
102, 4, 3, 8, 9pw2dvdseulemle 12305 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥𝑚)
113nn0red 9294 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℝ)
124nn0red 9294 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℝ)
1311, 12letri3d 8135 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (𝑚 = 𝑥 ↔ (𝑚𝑥𝑥𝑚)))
147, 10, 13mpbir2and 946 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 = 𝑥)
1514ex 115 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) → ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
1615ralrimivva 2576 . . 3 (𝑁 ∈ ℕ → ∀𝑚 ∈ ℕ0𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
17 oveq2 5926 . . . . . 6 (𝑚 = 𝑥 → (2↑𝑚) = (2↑𝑥))
1817breq1d 4039 . . . . 5 (𝑚 = 𝑥 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑥) ∥ 𝑁))
19 oveq1 5925 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1))
2019oveq2d 5934 . . . . . . 7 (𝑚 = 𝑥 → (2↑(𝑚 + 1)) = (2↑(𝑥 + 1)))
2120breq1d 4039 . . . . . 6 (𝑚 = 𝑥 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑥 + 1)) ∥ 𝑁))
2221notbid 668 . . . . 5 (𝑚 = 𝑥 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))
2318, 22anbi12d 473 . . . 4 (𝑚 = 𝑥 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)))
2423rmo4 2953 . . 3 (∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ∀𝑚 ∈ ℕ0𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
2516, 24sylibr 134 . 2 (𝑁 ∈ ℕ → ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
26 reu5 2711 . 2 (∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ (∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
271, 25, 26sylanbrc 417 1 (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2164  wral 2472  wrex 2473  ∃!wreu 2474  ∃*wrmo 2475   class class class wbr 4029  (class class class)co 5918  1c1 7873   + caddc 7875  cle 8055  cn 8982  2c2 9033  0cn0 9240  cexp 10609  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  oddpwdclemxy  12307  oddpwdclemdvds  12308  oddpwdclemndvds  12309  oddpwdclemodd  12310  oddpwdclemdc  12311  oddpwdc  12312
  Copyright terms: Public domain W3C validator