Step | Hyp | Ref
| Expression |
1 | | pw2dvds 12120 |
. 2
⊢ (𝑁 ∈ ℕ →
∃𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
2 | | simpll 524 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑁 ∈ ℕ) |
3 | | simplrl 530 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℕ0) |
4 | | simplrr 531 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℕ0) |
5 | | simprll 532 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑚) ∥ 𝑁) |
6 | | simprrr 535 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑥 + 1)) ∥ 𝑁) |
7 | 2, 3, 4, 5, 6 | pw2dvdseulemle 12121 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ≤ 𝑥) |
8 | | simprrl 534 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑥) ∥ 𝑁) |
9 | | simprlr 533 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑚 + 1)) ∥ 𝑁) |
10 | 2, 4, 3, 8, 9 | pw2dvdseulemle 12121 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ≤ 𝑚) |
11 | 3 | nn0red 9189 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℝ) |
12 | 4 | nn0red 9189 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℝ) |
13 | 11, 12 | letri3d 8035 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (𝑚 = 𝑥 ↔ (𝑚 ≤ 𝑥 ∧ 𝑥 ≤ 𝑚))) |
14 | 7, 10, 13 | mpbir2and 939 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 = 𝑥) |
15 | 14 | ex 114 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) → ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥)) |
16 | 15 | ralrimivva 2552 |
. . 3
⊢ (𝑁 ∈ ℕ →
∀𝑚 ∈
ℕ0 ∀𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥)) |
17 | | oveq2 5861 |
. . . . . 6
⊢ (𝑚 = 𝑥 → (2↑𝑚) = (2↑𝑥)) |
18 | 17 | breq1d 3999 |
. . . . 5
⊢ (𝑚 = 𝑥 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑥) ∥ 𝑁)) |
19 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1)) |
20 | 19 | oveq2d 5869 |
. . . . . . 7
⊢ (𝑚 = 𝑥 → (2↑(𝑚 + 1)) = (2↑(𝑥 + 1))) |
21 | 20 | breq1d 3999 |
. . . . . 6
⊢ (𝑚 = 𝑥 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑥 + 1)) ∥ 𝑁)) |
22 | 21 | notbid 662 |
. . . . 5
⊢ (𝑚 = 𝑥 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) |
23 | 18, 22 | anbi12d 470 |
. . . 4
⊢ (𝑚 = 𝑥 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) |
24 | 23 | rmo4 2923 |
. . 3
⊢
(∃*𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ∀𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0
((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥)) |
25 | 16, 24 | sylibr 133 |
. 2
⊢ (𝑁 ∈ ℕ →
∃*𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
26 | | reu5 2682 |
. 2
⊢
(∃!𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ (∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) |
27 | 1, 25, 26 | sylanbrc 415 |
1
⊢ (𝑁 ∈ ℕ →
∃!𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |