| Step | Hyp | Ref
 | Expression | 
| 1 |   | pw2dvds 12334 | 
. 2
⊢ (𝑁 ∈ ℕ →
∃𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | 
| 2 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑁 ∈ ℕ) | 
| 3 |   | simplrl 535 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℕ0) | 
| 4 |   | simplrr 536 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℕ0) | 
| 5 |   | simprll 537 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑚) ∥ 𝑁) | 
| 6 |   | simprrr 540 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑥 + 1)) ∥ 𝑁) | 
| 7 | 2, 3, 4, 5, 6 | pw2dvdseulemle 12335 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ≤ 𝑥) | 
| 8 |   | simprrl 539 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑥) ∥ 𝑁) | 
| 9 |   | simprlr 538 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑚 + 1)) ∥ 𝑁) | 
| 10 | 2, 4, 3, 8, 9 | pw2dvdseulemle 12335 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ≤ 𝑚) | 
| 11 | 3 | nn0red 9303 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℝ) | 
| 12 | 4 | nn0red 9303 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℝ) | 
| 13 | 11, 12 | letri3d 8142 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (𝑚 = 𝑥 ↔ (𝑚 ≤ 𝑥 ∧ 𝑥 ≤ 𝑚))) | 
| 14 | 7, 10, 13 | mpbir2and 946 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 = 𝑥) | 
| 15 | 14 | ex 115 | 
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0
∧ 𝑥 ∈
ℕ0)) → ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥)) | 
| 16 | 15 | ralrimivva 2579 | 
. . 3
⊢ (𝑁 ∈ ℕ →
∀𝑚 ∈
ℕ0 ∀𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥)) | 
| 17 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑚 = 𝑥 → (2↑𝑚) = (2↑𝑥)) | 
| 18 | 17 | breq1d 4043 | 
. . . . 5
⊢ (𝑚 = 𝑥 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑥) ∥ 𝑁)) | 
| 19 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1)) | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . 7
⊢ (𝑚 = 𝑥 → (2↑(𝑚 + 1)) = (2↑(𝑥 + 1))) | 
| 21 | 20 | breq1d 4043 | 
. . . . . 6
⊢ (𝑚 = 𝑥 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑥 + 1)) ∥ 𝑁)) | 
| 22 | 21 | notbid 668 | 
. . . . 5
⊢ (𝑚 = 𝑥 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) | 
| 23 | 18, 22 | anbi12d 473 | 
. . . 4
⊢ (𝑚 = 𝑥 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) | 
| 24 | 23 | rmo4 2957 | 
. . 3
⊢
(∃*𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ∀𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0
((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥)) | 
| 25 | 16, 24 | sylibr 134 | 
. 2
⊢ (𝑁 ∈ ℕ →
∃*𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | 
| 26 |   | reu5 2714 | 
. 2
⊢
(∃!𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ (∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) | 
| 27 | 1, 25, 26 | sylanbrc 417 | 
1
⊢ (𝑁 ∈ ℕ →
∃!𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |