ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseu GIF version

Theorem pw2dvdseu 12122
Description: A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
pw2dvdseu (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁

Proof of Theorem pw2dvdseu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pw2dvds 12120 . 2 (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
2 simpll 524 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑁 ∈ ℕ)
3 simplrl 530 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℕ0)
4 simplrr 531 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℕ0)
5 simprll 532 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑚) ∥ 𝑁)
6 simprrr 535 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑥 + 1)) ∥ 𝑁)
72, 3, 4, 5, 6pw2dvdseulemle 12121 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚𝑥)
8 simprrl 534 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑥) ∥ 𝑁)
9 simprlr 533 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑚 + 1)) ∥ 𝑁)
102, 4, 3, 8, 9pw2dvdseulemle 12121 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥𝑚)
113nn0red 9189 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℝ)
124nn0red 9189 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℝ)
1311, 12letri3d 8035 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (𝑚 = 𝑥 ↔ (𝑚𝑥𝑥𝑚)))
147, 10, 13mpbir2and 939 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 = 𝑥)
1514ex 114 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) → ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
1615ralrimivva 2552 . . 3 (𝑁 ∈ ℕ → ∀𝑚 ∈ ℕ0𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
17 oveq2 5861 . . . . . 6 (𝑚 = 𝑥 → (2↑𝑚) = (2↑𝑥))
1817breq1d 3999 . . . . 5 (𝑚 = 𝑥 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑥) ∥ 𝑁))
19 oveq1 5860 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1))
2019oveq2d 5869 . . . . . . 7 (𝑚 = 𝑥 → (2↑(𝑚 + 1)) = (2↑(𝑥 + 1)))
2120breq1d 3999 . . . . . 6 (𝑚 = 𝑥 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑥 + 1)) ∥ 𝑁))
2221notbid 662 . . . . 5 (𝑚 = 𝑥 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))
2318, 22anbi12d 470 . . . 4 (𝑚 = 𝑥 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)))
2423rmo4 2923 . . 3 (∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ∀𝑚 ∈ ℕ0𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
2516, 24sylibr 133 . 2 (𝑁 ∈ ℕ → ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
26 reu5 2682 . 2 (∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ (∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
271, 25, 26sylanbrc 415 1 (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450  ∃*wrmo 2451   class class class wbr 3989  (class class class)co 5853  1c1 7775   + caddc 7777  cle 7955  cn 8878  2c2 8929  0cn0 9135  cexp 10475  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-dvds 11750
This theorem is referenced by:  oddpwdclemxy  12123  oddpwdclemdvds  12124  oddpwdclemndvds  12125  oddpwdclemodd  12126  oddpwdclemdc  12127  oddpwdc  12128
  Copyright terms: Public domain W3C validator