Proof of Theorem blssexps
Step | Hyp | Ref
| Expression |
1 | | blssps 13067 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥) |
2 | | sstr 3150 |
. . . . . . . . 9
⊢ (((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴) |
3 | 2 | expcom 115 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝐴 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
4 | 3 | reximdv 2567 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝐴 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
5 | 1, 4 | syl5com 29 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝑥) → (𝑥 ⊆ 𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
6 | 5 | 3expa 1193 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) ∧ 𝑃 ∈ 𝑥) → (𝑥 ⊆ 𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
7 | 6 | expimpd 361 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
8 | 7 | adantlr 469 |
. . 3
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
9 | 8 | rexlimdva 2583 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
10 | | simpll 519 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝐷 ∈ (PsMet‘𝑋)) |
11 | | simplr 520 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ 𝑋) |
12 | | rpxr 9597 |
. . . . . 6
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
13 | 12 | ad2antrl 482 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ*) |
14 | | blelrnps 13059 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷)) |
15 | 10, 11, 13, 14 | syl3anc 1228 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷)) |
16 | | simprl 521 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ+) |
17 | | blcntrps 13055 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) |
18 | 10, 11, 16, 17 | syl3anc 1228 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) |
19 | | simprr 522 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴) |
20 | | eleq2 2230 |
. . . . . 6
⊢ (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))) |
21 | | sseq1 3165 |
. . . . . 6
⊢ (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑥 ⊆ 𝐴 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
22 | 20, 21 | anbi12d 465 |
. . . . 5
⊢ (𝑥 = (𝑃(ball‘𝐷)𝑟) → ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))) |
23 | 22 | rspcev 2830 |
. . . 4
⊢ (((𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷) ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
24 | 15, 18, 19, 23 | syl12anc 1226 |
. . 3
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
25 | 24 | rexlimdvaa 2584 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
26 | 9, 25 | impbid 128 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |