ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssexps GIF version

Theorem blssexps 13069
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blssexps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑟,𝐴   𝐷,𝑟,𝑥   𝑃,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem blssexps
StepHypRef Expression
1 blssps 13067 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥)
2 sstr 3150 . . . . . . . . 9 (((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥𝑥𝐴) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
32expcom 115 . . . . . . . 8 (𝑥𝐴 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
43reximdv 2567 . . . . . . 7 (𝑥𝐴 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
51, 4syl5com 29 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
653expa 1193 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
76expimpd 361 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
87adantlr 469 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
98rexlimdva 2583 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
10 simpll 519 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝐷 ∈ (PsMet‘𝑋))
11 simplr 520 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃𝑋)
12 rpxr 9597 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1312ad2antrl 482 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ*)
14 blelrnps 13059 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
1510, 11, 13, 14syl3anc 1228 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
16 simprl 521 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ+)
17 blcntrps 13055 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
1810, 11, 16, 17syl3anc 1228 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
19 simprr 522 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
20 eleq2 2230 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑃𝑥𝑃 ∈ (𝑃(ball‘𝐷)𝑟)))
21 sseq1 3165 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑥𝐴 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
2220, 21anbi12d 465 . . . . 5 (𝑥 = (𝑃(ball‘𝐷)𝑟) → ((𝑃𝑥𝑥𝐴) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)))
2322rspcev 2830 . . . 4 (((𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷) ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2415, 18, 19, 23syl12anc 1226 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2524rexlimdvaa 2584 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴)))
269, 25impbid 128 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wrex 2445  wss 3116  ran crn 4605  cfv 5188  (class class class)co 5842  *cxr 7932  +crp 9589  PsMetcpsmet 12619  ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-psmet 12627  df-bl 12630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator